Herein we demonstrate that the rapid 'shapeshifting' constitutional isomerization of a substituted bullvalene is influenced by the -to- configurational isomerization of a remote carbamate group, giving rise to correlated motion. We find that, while the -configurational isomer of a bulky carbamate favors the -bullvalene constitutional isomer, a noncovalent bonding interaction within the -carbamate tips the equilibrium toward the -bullvalene form. Using DFT modelling and NMR spectroscopy, this long-range interaction is identified as being between the bullvalene core and a pendant phenyl group connected to the carbamate.
View Article and Find Full Text PDFThe balance between strain relief and aromatic stabilization dictates the form and function of non-planar π-aromatics. Overcrowded systems are known to undergo geometric deformations, but the energetically favourable π-electron delocalization of their aromatic ring(s) is typically preserved. In this study we incremented the strain energy of an aromatic system beyond its aromatic stabilization energy, causing it to rearrange and its aromaticity to be ruptured.
View Article and Find Full Text PDFHerein, we expose how the antagonistic relationship between solid-state luminescence and photocyclization of oligoaryl alkene chromophores is modulated by the conjugation length of their alkenyl backbones. Heptaaryl cycloheptatriene molecular rotors exhibit aggregation-induced emission characteristics. We show that their emission is turned off upon breaking the conjugation of the cycloheptatriene by epoxide formation.
View Article and Find Full Text PDFBF-based fluorophores, such as the well-known BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dye, are prevalently used in diverse research areas (e.g., bioimaging and chemosensing) as they exhibit promising features including high quantum yields, fine-tuned absorption and emission spectra as well as good photostability and biocompatibility.
View Article and Find Full Text PDFPorphyrins are cornerstone functional materials that are useful in a wide variety of settings, ranging from molecular electronics to biology and medicine. Their applications are often hindered, however, by poor solubilities that result from their extended, solvophobic aromatic surfaces. Attempts to counteract this problem by functionalizing their peripheries have been met with only limited success.
View Article and Find Full Text PDFShapeshifting molecules exhibit rapid constitutional dynamics while remaining stable, isolable molecules, making them promising artificial scaffolds from which to explore complex biological systems and create new functional materials. However, their structural complexity presents challenges for designing their syntheses and understanding their equilibria. This minireview showcases (1) recent applications of highly dynamic shapeshifting molecules in sensing and distinguishing complex small molecules and (2) detailed insights into the adaptation of tractable bistable systems to changes in their local environment.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2019
Dynamic covalent rearrangements of fluxional carbon cages, such as bullvalenes and barbaralanes, impart 'shapeshifting' molecular properties. Here, a series of five barbaralanes each interconvert dynamically between two constitutional isomers in solution, but resolve to single isomers upon crystallisation. Unexpectedly, the minor solution-phase isomers are resolved in two instances.
View Article and Find Full Text PDFSmall, apolar aromatic groups, such as phenyl rings, are commonly included in the structures of fluorophores to impart hindered intramolecular rotations, leading to desirable solid-state luminescence properties. However, they are not normally considered to take part in through-space interactions that influence the fluorescent output. Here, we report on the photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups.
View Article and Find Full Text PDF