Publications by authors named "Aisha A Alshahrani"

The purification and densification of wastewater play an important role in water recycling, especially if the materials used in water recycling are other types of recycled waste. Therefore, considering this view in this study, the biosynthesis of silver-decorated chromium oxide nanoparticles utilizing a wasted (garlic) peel extract is investigated. The aqueous extract of garlic peel (GPE) was treated with silver nitrate, chromium nitrate, and a mixture of silver nitrate and chromium nitrate to synthesize silver nanoparticles (Ag-garlic), chromium oxide nanoparticles (CrO-garlic), and silver-decorated chromium oxide nanoparticles (Ag@CrO-garlic), respectively.

View Article and Find Full Text PDF

The aqueous onion peel extract (OPE) was used to synthesize silver nanoparticles (Ag-onion), samarium oxide nanoparticles (SmO-onion), and silver/samarium oxide core/shell nanoparticles (Ag@SmO-onion). The produced nanoparticles were characterized by thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), energy band gap, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta potential, and transmission electron microscopy (TEM). OPE and NPs were tested for the disinfection of some water microbes.

View Article and Find Full Text PDF

Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology.

View Article and Find Full Text PDF

The current research intended to employ a facile and economical process, which is also ecofriendly to transform camel waste bones into novel heterostructure for cleansing of diverse waste waters. The bones of camel were utilized for preparation of hydroxyapatite by hydrothermal method. The prepared hydroxyapatite was applied to the synthesis of cerium oxide-hydroxyapatite coated with natural polymer chitosan (CS-HAP-CeO) heterostructure.

View Article and Find Full Text PDF

Copper binding motifs with their molecular mechanisms of selective copper(I) recognition are essential molecules for acquiring copper ions, trafficking copper to specific locations and controlling the potentially damaging redox activities of copper in biochemical processes. The redox activity and multiple Cu(I) binding of an analog methanobactin peptide-2 (amb2) with the sequence acetyl-His1-Cys2-Tyr3-Pro4-His5-Cys6 was investigated using ion mobility-mass spectrometry (IM-MS) and UV-Vis spectrophotometry analyses. The Cu(II) titration of amb2 showed oxidation of amb2 via the formation of intra- and intermolecular Cys-Cys disulfide bridges and the multiple Cu(I) coordination by unoxidized amb2 or the partially oxidized dimer and trimer of amb2.

View Article and Find Full Text PDF