Cultur Divers Ethnic Minor Psychol
July 2024
Objective: The consequences of racism and racial stress on the academic and social well-being of adolescents are profound and well-documented. However, our understanding of how adolescents navigate racial stress and develop the agency to address discriminatory encounters, particularly in settings where educators struggle to intervene with microaggressions, remains limited. Research into the development of racial coping self-efficacy (RCSE) and coping skills has shown promise in enhancing the overall well-being of youth.
View Article and Find Full Text PDFThe tailorable properties of synthetic polyethylene glycol (PEG) hydrogels make them an attractive substrate for human organoid assembly. Here, we formed human neural organoids from iPSC-derived progenitor cells in two distinct formats: (i) cells seeded on a Matrigel surface; and (ii) cells seeded on a synthetic PEG hydrogel surface. Tissue assembly on synthetic PEG hydrogels resulted in three dimensional (3D) planar neural organoids with greater neuronal diversity, greater expression of neurovascular and neuroinflammatory genes, and reduced variability when compared with tissues assembled upon Matrigel.
View Article and Find Full Text PDFNanomedicine (Lond)
March 2023
The density of functional ligands on lipid nanoparticles (LNPs) greatly determined its capability of postfunctionalization and targetability for the applications of personalized nanomedicine and drug/gene delivery. This work is to investigate whether and how formulation methods influence the presentation of surface ligands. Biotin-modified LNPs as a functional LNP model were synthesized by four different formulation methods.
View Article and Find Full Text PDFPericytes play a critical role in promoting, regulating, and maintaining numerous vascular functions. Their dysfunction is a major contributor to the progression of vascular and neurodegenerative diseases, making them an ideal candidate for large-scale production for disease modeling and regenerative cell therapy. This protocol describes the rapid and robust differentiation of pericytes from human induced pluripotent stem cells (hiPSCs) while simultaneously generating a population of hiPSC-derived endothelial progenitor cells.
View Article and Find Full Text PDFMatrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) have emerged as a promising alternative to bone-marrow derived mesenchymal stem/stromal cells for cartilage tissue engineering. However, the effect of biochemical and mechanical cues on iPSC chondrogenesis remains understudied. This study evaluated chondrogenesis of induced pluripotent mesenchymal progenitor cells (iPS-MPs) encapsulated in a cartilage-mimetic hydrogel under different culture conditions: free swelling versus dynamic compressive loading and different growth factors (TGFβ3 and/or BMP2).
View Article and Find Full Text PDFFocal defects in articular cartilage are unable to self-repair and, if left untreated, are a leading risk factor for osteoarthritis. This study examined cartilage degeneration surrounding a defect and then assessed whether infilling the defect prevents degeneration. We created a focal chondral defect in porcine osteochondral explants and cultured them ex vivo with and without dynamic compressive loading to decouple the role of loading.
View Article and Find Full Text PDFBackground: In this study, we investigate the in vitro and in vivo chondrogenic capacity of a novel photopolymerizable cartilage mimetic hydrogel, enhanced with extracellular matrix analogs, for cartilage regeneration.
Purpose: To (1) determine whether mesenchymal stem cells (MSCs) embedded in a novel cartilage mimetic hydrogel support in vitro chondrogenesis, (2) demonstrate that the proposed hydrogel can be delivered in situ in a critical chondral defect in a rabbit model, and (3) determine whether the hydrogel with or without MSCs supports in vivo chondrogenesis in a critical chondral defect.
Study Design: Controlled laboratory study.
Mesenchymal stem cells (MSCs) are promising for cartilage regeneration, but readily undergo terminal differentiation. The aim of this study was two-fold: a) investigate physiochemical cues from a cartilage-mimetic hydrogel under dynamic compressive loading on MSC chondrogenesis and hypertrophy and b) identify whether Smad signaling and p38 MAPK signaling mediate hypertrophy during MSC chondrogenesis. Human MSCs were encapsulated in photoclickable poly(ethylene glycol) hydrogels containing chondroitin sulfate and RGD, cultured under dynamic compressive loading or free swelling for three weeks, and evaluated by qPCR and immunohistochemistry.
View Article and Find Full Text PDFCartilage tissue engineering strategies that use in situ forming degradable hydrogels for mesenchymal stem cell (MSC) delivery are promising for treating chondral defects. Hydrogels that recapitulate aspects of the native tissue have the potential to encourage chondrogenesis, permit cellular mediated degradation, and facilitate tissue growth. This study investigated photoclickable poly(ethylene glycol) hydrogels, which were tailored to mimic the cartilage microenvironment by incorporating extracellular matrix analogs, chondroitin sulfate and RGD, and crosslinks sensitive to matrix metalloproteinase 7 (MMP7).
View Article and Find Full Text PDFDamage to articular cartilage can over time cause degeneration to the tissue surrounding the injury. To address this problem, scaffolds that prevent degeneration and promote neotissue growth are needed. A new hybrid scaffold that combines a stereolithography-based 3D printed support structure with an injectable and photopolymerizable hydrogel for delivering cells to treat focal chondral defects is introduced.
View Article and Find Full Text PDFFocal chondral lesions and early osteoarthritis (OA) are responsible for progressive joint pain and disability in millions of people worldwide, yet there is currently no surgical joint preservation treatment available to fully restore the long term functionality of cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. Toward improving cartilage repair, hydrogel design has advanced in recent years to improve their utility.
View Article and Find Full Text PDFCurrent hydrogels used for tissue engineering are limited to a single range of mechanical properties within the replicated tissue construct. We show that repeated in-swelling by a single hydrogel pre-cursor solution into an existing polymerized hydrogel followed by photo-exposure increases hydrogel mechanical properties. The process is demonstrated with a photo-clickable thiol-ene hydrogel using a biocompatible precursor solution of poly(ethylene glycol) dithiol and 8-arm poly(ethylene glycol) functionalized with norbornene.
View Article and Find Full Text PDFThree dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype.
View Article and Find Full Text PDFA bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer.
View Article and Find Full Text PDFWe present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory.
View Article and Find Full Text PDF