Neuronal homeostasis prevents hyperactivity and hypoactivity. Age-related hyperactivity suggests homeostasis may be dysregulated in later life. However, plasticity mechanisms preventing age-related hyperactivity and their efficacy in later life are unclear.
View Article and Find Full Text PDFCSL112 (apolipoprotein A-I [apoA-I, human]) is a novel drug in development to reduce the risk of recurrent cardiovascular events following acute myocardial infarction by increasing cholesterol efflux capacity (CEC). This phase I study aimed to compare the pharmacokinetics (PKs), pharmacodynamics (PDs), and safety of CSL112 in Japanese and White subjects. A total of 34 Japanese subjects were randomized to receive a single infusion of CSL112 (2, 4, or 6 g) or placebo and 18 White subjects were randomized to receive a single dose of 6 g CSL112 or placebo, followed by PK/PD assessment and adverse events monitoring.
View Article and Find Full Text PDFThe adult neocortex is not hard-wired but instead retains the capacity to reorganise across multiple spatial scales long into adulthood. Plastic reorganisation occurs at the level of mesoscopic sensory maps, functional neuronal assemblies and synaptic ensembles and is thought to be a critical feature of neuronal network function. Here, we describe a series of approaches that use calcium imaging to measure network reorganisation across multiple spatial scales in vivo.
View Article and Find Full Text PDFBackground: In the Southern Hemisphere 2010 influenza season, Seqirus' split-virion, trivalent inactivated influenza vaccine was associated with increased reports of fevers and febrile reactions in young children. A staged clinical development program of a quadrivalent vaccine (Seqirus IIV4 [S-IIV4]; Afluria® Quadrivalent/Afluria Quad™/Afluria Tetra™), wherein each vaccine strain is split using a higher detergent concentration to reduce lipid content (considered the cause of the increased fevers and febrile reactions), is now complete.
Methods: Children aged 6-59 months were randomized 3:1 and stratified by age (6-35 months/36-59 months) to receive S-IIV4 (n = 1684) or a United States (US)-licensed comparator IIV4 (C-IIV4; Fluzone® Quadrivalent; n = 563) during the Northern Hemisphere 2016-2017 influenza season.
Background: Seqirus 2010 Southern Hemisphere split-virion trivalent inactivated influenza vaccine (IIV3) was associated with increased febrile reactions in children. Studies in vitro concluded that increasing concentrations of splitting agent decreased residual lipids and attenuated proinflammatory cytokine signals associated with fever. We assessed immunogenicity and safety of a quadrivalent inactivated influenza vaccine (IIV4; produced using higher concentration of splitting agent) versus a United States-licensed comparator IIV4 in healthy children aged 5-17years.
View Article and Find Full Text PDFBackground: Vaccination is the most effective means of influenza prevention. Efficacy of trivalent vaccines may be enhanced by including both B strain lineages. This phase 3, double-blind study assessed the immunogenicity and safety/tolerability of a quadrivalent inactivated influenza vaccine (IIV4) versus the United States (US)-licensed 2014-2015 trivalent inactivated influenza vaccine (IIV3-Yamagata [IIV3-YAM]; Afluria) and IIV3 containing the alternate Victoria B strain (IIV3-VIC) in adults ≥18years.
View Article and Find Full Text PDFPrevious studies in pulmonary artery smooth muscle cells (PASMCs) showed that acute hypoxia activates capacitative Ca(2+) entry (CCE) but the molecular candidate(s) mediating CCE caused by acute hypoxia remain unclear. The present study aimed to determine if transient receptor potential canonical 1 (TRPC1) and Orai1 interact with stromal interacting molecule 1 (STIM1) and mediate CCE caused by acute hypoxia in mouse PASMCs. In primary cultured PASMCs loaded with fura-2, acute hypoxia caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)).
View Article and Find Full Text PDFWhile on placement with a district nursing team I spent the morning in a residential home for people who have dementia. My mentor and I had several patients to visit in the home including a woman who had oedematous legs and required a Doppler ultrasound scan.
View Article and Find Full Text PDFPrevious studies in mouse pulmonary arterial smooth muscle cells (PASMCs) showed that cannonical transient receptor potential channel TRPC1 and stromal interaction molecule 1 (STIM1) mediate the sustained component of capacitative Ca(2+) entry (CCE), but the molecular candidate(s) that mediate the transient component of CCE remain unknown. The aim of the present study was to examine whether Orai1 mediates the transient component of CCE through activation of STIM1 in mouse PASMCs. In primary cultured mouse PASMCs loaded with fura-2, cyclopiazonic acid (CPA) caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)).
View Article and Find Full Text PDFCapacitative calcium entry (CCE) through store-operated channels (SOCs) has been shown to contribute to the rise in intracellular calcium concentration ([Ca(2+)](i)) and mediate pulmonary artery smooth muscle contraction. CCE is activated as a result of depletion of intracellular Ca(2+) stores but there is a great deal of controversy surrounding the underlying signal that active CCE and the molecular makeup of SOCs. The discovery of canonical subgroup of transient receptor potential channels (TRPC) and recent identification of stromal-interacting molecule 1 (STIM1) protein have opened a door to the study of the identity of SOCs and the signal that activates these channels.
View Article and Find Full Text PDFNative volume-sensitive outwardly rectifying anion channels (VSOACs) play a significant role in cell volume homeostasis in mammalian cells. However, the molecular correlate of VSOACs has been elusive to identify. The short isoform of ClC-3 (sClC-3) is a member of the mammalian ClC gene family and has been proposed to be a molecular candidate for VSOACs in cardiac myocytes and vascular smooth muscle cells.
View Article and Find Full Text PDFHuman mesenchymal stem cells (MSC) hold great promise for cellular replacement therapies. Despite their contributing to phenotypically distinct cells in multiple tissues, controversy remains regarding whether the phenotype switch results from a true differentiation process. Here, we studied the events occurring during the first 120 h after human MSC transplantation into a large animal model.
View Article and Find Full Text PDFPrevious studies in pulmonary arterial smooth muscle cells (PASMCs) showed that the TRPC1 channel mediates capacitative Ca(2+) entry (CCE), but the molecular signal(s) that activate TRPC1 in PASMCs remains unknown. The aim of the present study was to determine if TRPC1 mediates CCE through activation of STIM1 protein in mouse PASMCs. In primary cultured mouse PASMCs loaded with fura-2, cyclopiazonic acid (CPA) caused a transient followed by a sustained rise in intracellular Ca(2+) concentration ([Ca(2+)](i)).
View Article and Find Full Text PDF(1) Molecular variations in two turkey skeletal muscle ryanodine receptor gene isoforms, alphaRYR and betaRYR, were analyzed by cloning and sequencing the entire cDNAs of the two isoforms. (2) Ten alternative splicing transcript variants (ASTVs) in the alphaRYR isoform were identified. These variants were clustered in three alternative splicing regions (ASRs).
View Article and Find Full Text PDFType 2 ryanodine receptor (RyR2) is the major calcium release channel in cardiac muscle. Phosphorylation of RyR2 by cAMP-dependent protein kinase A and by calmodulin-dependent protein kinase II modulates channel activity. Hyperphosphorylation at a single amino acid residue, Ser-2808, has been proposed to directly disrupt the binding of a 12.
View Article and Find Full Text PDFDisease resistance in plants requires the activation of defense signaling pathways to prevent the spread of infection. The protein Required for Mla12 Resistance (RAR1) is a component of such pathways, which contains cysteine- and histidine-rich domains (CHORDs) that bind zinc. CHORDs are 60 amino acid domains, usually arranged in tandem, found in almost all eukaryotes, where they are involved in processes ranging from pressure sensing in the heart to maintenance of diploidy in fungi, and exhibit distinct protein-protein interaction specificity.
View Article and Find Full Text PDFObjective: To study the early time course of engraftment of human mesenchymal stem cells in fetal sheep heart and determine the relative roles of proliferation and homing in formation of aggregates of human Purkinje fiber cells.
Methods: The human sheep xenograft model was utilized for these studies. Prior to injection in the preimmune fetus, human cells were labeled with fluorescent dyes to be able to track human cells at early times of engraftment.
Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10(15) cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes.
View Article and Find Full Text PDFBackground: We have investigated the usefulness of a model of cardiac development in a large mammal, sheep, for studies of engraftment of human stem cells in the heart.
Methods And Results: Adult and fetal human mesenchymal stem cells were injected intraperitoneally into sheep fetuses in utero. Hearts at late fetal development were analyzed for engraftment of human cells.
Diffusion of cardiac ryanodine receptors (RyR2) in lipid bilayers was characterized. RyR2 location was monitored by imaging fluo-3 fluorescence due to Ca2+ flux through RyR2 channels or fluorescence from RyR2 conjugated with Alexa 488 or containing green fluorescent protein. Single channel currents were recorded to ensure that functional channels were studied.
View Article and Find Full Text PDF