Publications by authors named "Aird K"

Myelin protein zero-like 3 (MPZL3) is an Immunoglobulin-containing transmembrane protein with predicted cell adhesion molecule function. Loss of 11q23, where the gene resides, is frequently observed in cancer, and copy number alterations are frequently detected in tumor specimens. Yet the role and consequences of altered MPZL3 expression have not been explored in tumor development and progression.

View Article and Find Full Text PDF

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear.

View Article and Find Full Text PDF

Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients.

View Article and Find Full Text PDF

Quiescence is a reversible cell cycle exit traditionally thought to be associated with a metabolically inactive state. Recent work in muscle cells indicates that metabolic reprogramming is associated with quiescence. Whether metabolic changes occur in cancer to drive quiescence is unclear.

View Article and Find Full Text PDF

Background: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging.

Methods: Based on cellular morphology in phase contrast images, we developed a deep-learning model named Detector of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence (D-MAINS).

View Article and Find Full Text PDF

Unlabelled: DNA damage and cytoplasmic DNA induce type-1 interferon (IFN-1) and potentiate responses to immune checkpoint inhibitors. Our prior work found that inhibitors of the DNA damage response kinase ATR (ATRi) induce IFN-1 and deoxyuridine (dU) incorporation by DNA polymerases, akin to antimetabolites. Whether and how dU incorporation is required for ATRi-induced IFN-1 signaling is not known.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological malignancy and is often associated with both DNA repair deficiency and extensive metabolic reprogramming. While still emerging, the interplay between these pathways can affect ovarian cancer phenotypes, including therapeutic resistance to the DNA damaging agents that are standard-of-care for this tumor type. In this review, we will discuss what is currently known about cellular metabolic rewiring in ovarian cancer that may impact DNA damage and repair in addition to highlighting how specific DNA repair proteins also promote metabolic changes.

View Article and Find Full Text PDF

Unlabelled: p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway.

View Article and Find Full Text PDF

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation.

View Article and Find Full Text PDF

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment and to identify novel downstream mediators of GPX3's pro-tumorigenic function.

Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model.

View Article and Find Full Text PDF

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function.

Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model.

View Article and Find Full Text PDF

Ovarian cancer is the deadliest gynecological malignancy, and accounts for over 150,000 deaths per year worldwide. The high grade serous ovarian carcinoma (HGSC) subtype accounts for almost 70% of ovarian cancers and is the deadliest. HGSC originates in the fimbria of the fallopian tube and disseminates through the peritoneal cavity.

View Article and Find Full Text PDF

DNA damage and cellular metabolism exhibit a complex interplay characterized by bidirectional feedback mechanisms. Key mediators of the DNA damage response and cellular metabolic regulation include Ataxia Telangiectasia and Rad3-related protein (ATR) and the mechanistic Target of Rapamycin Complex 1 (mTORC1), respectively. Previous studies have established ATR as a regulatory upstream factor of mTORC1 during replication stress; however, the precise mechanisms by which mTORC1 is activated in this context remain poorly defined.

View Article and Find Full Text PDF

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 () have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome.

View Article and Find Full Text PDF

p16 is a tumor suppressor encoded by the gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway.

View Article and Find Full Text PDF

The persistence of ovarian cancer stem-like cells (OvCSCs) after chemotherapy resistance has been implicated in relapse. However, the ability of these relatively quiescent cells to produce the robust tumor regrowth necessary for relapse remains an enigma. Since normal stem cells exist in a niche, and tumor-associated macrophages (TAMs) are the highest abundance immune cell within ovarian tumors, we hypothesized that TAMs may influence OvCSC proliferation.

View Article and Find Full Text PDF

Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified.

View Article and Find Full Text PDF

Senescent cancer cells alter their microenvironment through secretion of pro-inflammatory cytokines and chemokines called the senescence-associated secretory phenotype (SASP) and upregulation of immunoinhibitory proteins such as CD80 and programmed death-ligand 1. The senescence field is just beginning to explore the role of these changes on antitumor immunity and response to immunotherapy. In this Perspective, we highlight a new study that aimed to determine how senescent breast cancer cells are shielded from immunosurveillance via upregulation of redundant immunoinhibitory proteins in two distinct senescent populations.

View Article and Find Full Text PDF

Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions.

View Article and Find Full Text PDF
Article Synopsis
  • ATR kinase plays a vital role in managing DNA damage responses and cell cycle checks, and its inhibitors (ATRi's) enhance CD8 T cell responses when combined with radiation in cancer models.
  • ATRi's trigger CDK1-dependent DNA replication processes in CD8 T cells while reducing key enzymes needed for nucleotide production, leading to genomic issues like dU contamination and R loops.
  • Thymidine can counteract some of the harmful effects caused by ATRi's, suggesting that controlling dU contamination is crucial for reducing side effects in cancer treatment and improving T cell anti-tumor responses.
View Article and Find Full Text PDF

Ovarian cancer is a highly aggressive disease with poor survival rates in part due to diagnosis after dissemination throughout the peritoneal cavity. It is well-known that inflammatory signals affect ovarian cancer dissemination. Inflammation is a hallmark of cellular senescence, a stable cell cycle arrest induced by a variety of stimuli including many of the therapies used to treat patients with ovarian cancer.

View Article and Find Full Text PDF

In this Comment, Naveen Tangudu and Katherine Aird discuss recent findings showing that 53BP1 regulates heterochromatin through liquid-liquid phase separation.

View Article and Find Full Text PDF

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes.

View Article and Find Full Text PDF

DNA polymerases play essential functions in replication fork progression and genome maintenance. DNA lesions and drug-induced replication stress result in up-regulation and re-localization of specialized DNA polymerases η and κ. Although oncogene activation significantly alters DNA replication dynamics, causing replication stress and genome instability, little is known about DNA polymerase expression and regulation in response to oncogene activation.

View Article and Find Full Text PDF