Publications by authors named "Aiquan Jiao"

The regulation of the structure and properties of new starch varieties has been a necessary step in the development of promising products. This study investigated the effects of 1 % xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) on the physicochemical properties and structure of triticale starch during fermentation. Frequency scanning and rapid viscosity analyzer results showed that the addition of XG or HPMC during fermentation resulted in the reduced loss factor (tanθ) and the increased peak viscosity, indicating that the network gel strength is enhanced.

View Article and Find Full Text PDF

In this study, a novel pea protein (PP)-based bigel was developed, featuring a high internal phase emulsion. The impact of gelling agent concentration on the gel properties and freeze-thaw stability of the bigel was investigated. The bigel was comprised of two distinct gel phases: an aqueous-phase gel with a covalent network formed by PP and transglutaminase (TGase), and an oil-phase gel with a crystal network structure of rice bran wax (RBW).

View Article and Find Full Text PDF

Starch is the main source of energy for the human body through diet, and its digestive properties are closely related to the occurrence of chronic diseases. Extrusion technology, which is characterized by low cost and high efficiency, has been widely used in the field of reducing starch digestibility and modifying starch, and it has great potential for designing and manufacturing precision nutrition for specific populations. However, this aspect of study has not been systemically summarized, so we systematically discuss the role of extrusion and non-starch components in starch modification in this review.

View Article and Find Full Text PDF
Article Synopsis
  • * Corn starch processed through this method displayed varied digestion and crystallization results when subjected to temperatures of 4°C and 45°C over different time periods (1, 3, and 7 days).
  • * The best RS content (60.19%) and the most effective reduction in digestibility were observed at 45°C, where denser crystalline structures formed, contrasting with lower thermal stability at 80°C.
View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates how the fine structure of B-type potato starch affects dough quality during freezing, particularly focusing on the effects of freeze-thaw (F/T) treatment on its molecular and physicochemical properties.
  • - The research found that smaller potato starch particles have a unique composition, showing higher amounts of certain chain lengths and altered surface characteristics after F/T treatment, which impacts their crystallinity and thermal properties.
  • - Overall, understanding these properties can help improve the use of different sizes of potato starch in frozen dough applications, enhancing their performance and functionality.
View Article and Find Full Text PDF

The structure and physicochemical properties of the complex system of peanut protein and gluten with different concentrations (0 %, 0.5 %, 1 %, and 2 %) of carboxymethyl cellulose (CMC) or sodium alginate (SA) under high-moisture extrusion were studied. The water absorption index and low-field nuclear magnetic resonance showed that adding 0.

View Article and Find Full Text PDF

The development of food-grade high internal phase emulsions (HIPEs) for 3D printing and the replacement of animal fats have attracted considerable attention. In this study, in order to improve the rheological properties and stability of pea protein to prepare HIPE, pea protein/carboxymethyl cellulose (pH-PP/CMC) was prepared and subjected to pH cycle treatment to produce HIPEs. The results showed that pH cycle treatment and CMC significantly reduced the droplet size of HIPEs (from 143.

View Article and Find Full Text PDF

In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings.

View Article and Find Full Text PDF

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and β-glucan. This study investigated the effects of β-glucan and highland barley protein of different molecular weights (2 × 10, 1 × 10, and 3 × 10 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that β-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance.

View Article and Find Full Text PDF

The impacts of protein types and its interaction with β-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without β-glucan. After removing WP, SP and AP, swelling powers of HBF without β-glucan (9.

View Article and Find Full Text PDF

This study investigated the effects of β-glucan (0-6%) on the physicochemical properties, structure, and in vitro digestibility of highland barley starch (HBS) under spray drying (SD). SD significantly enhanced the inhibitory effect of 6% β-glucan on the in vitro digestibility and glucose diffusion of HBS. After SD, the addition of β-glucan at 4% and 6% concentration significantly increased the pasting temperatures of starch while decreased the rheological properties.

View Article and Find Full Text PDF

There is an increasing demand for stable, highly viscoelastic, and printable emulsion gels based on pea protein (PeaP) as a substitute for animal fat. In this article, a simple pH modulation strategy was applied to regulate high internal phase (HIPE) gels prepared from PeaP and hydroxypropyl starch (HPS). The results showed that the interfacial tension of PeaP decreased from 11.

View Article and Find Full Text PDF

Whole wheat bread has high nutritional value but is characterized by inferior quality and a high glycemic index. Studies have shown that adding β-glucans and protein can improve bread quality. This study investigated the effects of added oat β-glucan, barley β-glucan, or yeast β-glucan on protein synergy and whole wheat dough and bread quality.

View Article and Find Full Text PDF

The formation of amylose-lipid complexes, known as resistant starch type Ⅴ (RS), is limited by the low content of amylose in natural starch, increasing the amylose content is an effective approach to improve the yield of RS. In this paper, an extrusion-debranching-complexing strategy with two extrusions was proposed to increase the formation of amylose-lipid complexes. A combination of corn starch (CS), pullulanase (60 U/g, w/w), and lauric acid (LA) with different contents of 4 %, 6 % and 8 % (w/w) generated enzymatically debranched extruded corn starch-lauric acid (EECS-LA) complexes after the second extrusion.

View Article and Find Full Text PDF

The effect of protein hydrolysates on starch digestibility has been observed in other heat treatments but has yet to be extensively researched under extrusion. This study aimed to analyze the physicochemical properties, structure, and starch digestibility of extruded rice starch-protein hydrolysate (ERS-RPH) complexes prepared by extrusion treatment. The resistant starch contents of ERS-RPH (12.

View Article and Find Full Text PDF

Novel, innovative approaches like edible gels (hydrogels and oleogels) are important food materials with great scientific interest due to their positive impacts on structural and functional foods and other unique properties. Biopolymers (protein, starch and other polysaccharides) can be excellent and cost-effective materials for the formed edible gels. Recently, natural gums, although also as biopolymers, are preferred as additives to further improve the textural and functional properties of edible gels, which have received extensive attention.

View Article and Find Full Text PDF

Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food.

View Article and Find Full Text PDF

In this study, composite nanoparticles consisting of zein and hydroxypropyl beta-cyclodextrin were prepared using a combined antisolvent co-precipitation/electrostatic interaction method. The effects of calcium ion concentration on the stability of the composite nanoparticles containing both curcumin and quercetin were investigated. Moreover, the stability and bioactivity of the quercetin and curcumin were characterized before and after encapsulation.

View Article and Find Full Text PDF
Article Synopsis
  • * Results showed that pH significantly influences the hydrogels' structure and strength, with pH 3 providing the highest mechanical strength and self-recovery.
  • * The best 3D printing capabilities were observed at pH 3, indicating that these hydrogels could enhance the development of new pea protein-based food ingredients and applications in the food industry.
View Article and Find Full Text PDF

Nisin is a natural bacteriocin that exhibits good antibacterial activity against Gram-positive bacteria. It has good solubility, stability, and activity under acidic conditions, but it becomes less soluble, stable, and active when the solution pH exceeds 6.0, which severely restricted the industrial application range of nisin as antibacterial agent.

View Article and Find Full Text PDF

Active packaging derived from polysaccharides plays an important role in prolonging the shelf life of food. In this study, cinnamon essential oil (CEO)-loaded chitosan nanoparticles (CNs) were prepared and embedded in hydroxypropyl methylcellulose (HPMC)/hydroxypropyl starch (HPS) blends to enhance the physicochemical and biofunctional properties of the formed films. Different concentrations (5, 10, 15, and 20 μL/mL) of CEOs were encapsulated with CNs to form CEO-CNs, as confirmed by Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD), and scanning electron microscope (SEM) images.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored the use of wheat gluten (WG) and peanut protein powder (PPP) mixtures for creating meat analogs through high moisture extrusion, analyzing various factors like water absorption, texture, and extrudate quality.
  • - A 50% WG ratio led to optimal extrudate characteristics, including lower hardness and higher springiness, while improving water mobility indicated by relaxation time changes.
  • - Understanding the relationships among raw materials, extruder responses, and product quality can help optimize the texture of plant-based protein meat substitutes.
View Article and Find Full Text PDF

Chitosan (CS) films have poor mechanical property, low water-resistance and limited antimicrobial activity, which hinder their application in food preservation industry. Cinnamaldehyde-tannic acid-zinc acetate nanoparticles (CTZA NPs) assembled from edible medicinal plant extracts were successfully incorporated into CS films to solve these issues. The tensile strength and water contact angle of the composite films increased about 5.

View Article and Find Full Text PDF

Background: Whole wheat bread is high in nutritional value but poor in technological quality; therefore, research on how to improve its technological quality has attracted extensive attention. The effects of fermentation methods, including straight dough(STD), sourdough (SOD), sponge dough (SPD), and refrigerated SPD (RSD) methods, on the dough and bread quality of whole wheat bread were investigated, focusing on pasting properties, rheological properties, thermal properties, microstructure, basic quality, and starch digestibility.

Results: The rapid viscosity analysis and rheological results demonstrated that SOD had the highest pasting temperature and the lowest viscosity, indicating an inhibition of starch pasting and partial protein hydrolysis, whereas the opposite trend presented by SPD and RSD indicated a greater starch hydration and a stronger gluten network.

View Article and Find Full Text PDF

Core-shell biopolymer nanoparticles are assembled from a hydrophobic protein (zein) core and a hydrophilic polysaccharide (carboxymethyl dextrin) shell. The nanoparticles were shown to have good stability and the ability to protect quercetin from chemical degradation under long-term storage, pasteurization, and UV irradiation. Spectroscopy analysis shows that electrostatic, hydrogen bonding, and hydrophobic interactions are the main driving forces for the formation of composite nanoparticles.

View Article and Find Full Text PDF