Leafy spurge (Euphorbia esula) is an important herb and potential energy source with medicinal value. Codon usage bias (CUB) is a static feature of genes and genomes that results from adaptation and selection during long-term evolution and facilitates molecular breeding in transgenic plants. Here, we used TransDecoder to identify candidate coding regions from the downloaded leafy spurge transcriptome and generate coding region annotation files based on reference genomes.
View Article and Find Full Text PDFTransition metal carbide shows excellent performance in selective hydrogenation of acetylene, however, the carburization of Pd-based intermetallic compounds remains infeasible. Here we report the successful synthesis of an unprecedented PdZnC intermetallic carbide, via co-infiltration of zinc and carbon in one-step carburization by syngas. Utilizing state-of-the-art in situ characterizations and theoretical calculation, we unveil the dynamic evolution of PdZnC during carburization, forming a PdZn like cubic phase carbide structure.
View Article and Find Full Text PDFAluminum (Al) toxicity in acidic soils leads to a considerable reduction in crop yields. MicroRNAs play essential roles in abiotic stress responses, but little is known of their role in the response of peanut (Arachnis hypogea L.) to Al stress.
View Article and Find Full Text PDFROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is the leading cause of blindness in older people in developed countries. It has been suggested that heavy metal exposure may be associated with the development of AMD, but most studies have focused on the effects of a single metal with traditional methods. In this study, we analyzed the relationship between 13 urinary heavy metal concentrations and AMD using NHANES data between 2005 and 2008.
View Article and Find Full Text PDFTwo-dimensional (2D) borophene materials are predicted to be ideal catalytic materials due to their structural analogy to graphene. However, the lack of chemical functionalization of borophene hinders its practical application in catalysis. Herein, we reported a massive production of freestanding few-layer 2D borophene oxide (BO) sheets with tunable active oxygen species by a moderate oxidation-assisted exfoliation method.
View Article and Find Full Text PDFAluminum (Al) toxicity in acidic soils reduces root growth and can lead to a considerable reduction in peanut plants ( L.). The caseinolytic protease (Clp) system plays the key role in abiotic stress response.
View Article and Find Full Text PDF5G radomes are easily wetted and stained by rainfall, which greatly reduces the quality of signal transmission. Superhydrophobic coatings are expected to solve this problem because of their unique wettability, but it is still challenging to develop robust superhydrophobic coatings via simple methods. Here, we report the design of robust superhydrophobic coatings containing oxalic acid-modified attapulgite (MDP) for inhibiting rain attenuation of 5G radomes.
View Article and Find Full Text PDFThe toxicity of aluminum (Al) in acidic soil inhibits plant development and reduces crop yields. Programmed cell death (PCD) is one of the important mechanisms in the plant response to Al toxicity. However, it is yet unknown if S-nitrosoglutathione reductase (GSNOR) provides Al-PCD.
View Article and Find Full Text PDFIn order to fulfill people's requirements for food quality and safety, it is a promising strategy to develop intelligent biodegradable food packaging materials. Herein, honeysuckle extracts/attapulgite/chitosan composite films containing natural carbon dots were fabricated for intelligent food packaging. Different characterization techniques were employed to study the obtained composite films, while the physicochemical properties, optical properties, antibacterial and antioxidant activities of composite films were determined.
View Article and Find Full Text PDFBackground: Drug therapy for eye diseases has been limited by multiple protective mechanisms of the eye, which can be improved using well-designed drug delivery systems. Mesoporous silica nanoparticles (MSNs) had been used in many studies as carriers of therapeutic agents for ocular diseases treatment. However, no studies have focused on ocular biosafety.
View Article and Find Full Text PDFHydrogen production from seawater remains challenging due to the deactivation of the hydrogen evolution reaction (HER) electrode under high current density. To overcome the activity-stability trade-offs in transition-metal sulfides, we propose a strategy to engineer sulfur migration by constructing a nickel-cobalt sulfides heterostructure with nitrogen-doped carbon shell encapsulation (CN@NiCoS) electrocatalyst. State-of-the-art ex situ/in situ characterizations and density functional theory calculations reveal the restructuring of the CN@NiCoS interface, clearly identifying dynamic sulfur migration.
View Article and Find Full Text PDFBackground: Cyperus stoloniferus is an important species in coastal ecosystems and possesses economic and ecological value. To elucidate the structural characteristics, variation, and evolution of the organelle genome of C. stoloniferus, we sequenced, assembled, and compared its mitochondrial and chloroplast genomes.
View Article and Find Full Text PDFThe development of efficient, safe, environmentally friendly, and user-friendly hemostatic dressings remains a great challenge for researchers. A variety of clay minerals and plant extracts have garnered considerable attention due to their outstanding hemostatic efficacy and favorable biosafety. In this study, a facile solution casting strategy was employed to prepare nanocomposite films by incorporating natural nanorod-like palygorskite (Pal) and herb-derived hemostat dencichine (DC) based on chitosan and polyvinylpyrrolidone.
View Article and Find Full Text PDFClay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time.
View Article and Find Full Text PDFis a species with important medicinal value and a complex genetic background. In this study, we sequenced and assembled the mitochondrial (mt) genomes of two varieties of . The mt genome lengths of var.
View Article and Find Full Text PDFThe thermodynamic instability of conventional aqueous foam-stabilized surfactants is a critical bottleneck in the construction of porous materials. Herein, a novel strategy is proposed for preparing a capillary foam based on Chlorella and utilizing it as a template for constructing porous materials with high-efficiency adsorption. The capillary foam was stabilized by Chlorella particles enclosed within a gel network of oil bridges connecting the particles (capillary suspension).
View Article and Find Full Text PDFReppe carbonylation of acetylene is an atom-economic and non-petroleum approach to synthesize acrylic acid and acrylate esters, which are key intermediates in the textile, leather finishing, and polymer industries. In the present work, a noble metal-free Co@SiO catalyst was prepared and evaluated in the methoxycarbonylation reaction of acetylene. It was discovered that pretreatment of the catalyst by different reductants (i.
View Article and Find Full Text PDFIndan and tetralin are widely used as fuel additives and the intermediates in the manufacture of thermal-stable jet fuel, many chemicals, medicines, and shockproof agents for rubber industry. Herein, we disclose a two-step route to selectively produce 5-methyl-2,3-dihydro-1H-indene (abbreviated as methylindan) and tetralin with xylose or the hemicelluloses from agricultural or forestry waste. Firstly, cyclopentanone (CPO) was selectively formed with ~60% carbon yield by the direct hydrogenolysis of xylose or hemicelluloses on a non-noble bimetallic Cu-La/SBA-15 catalyst.
View Article and Find Full Text PDF