The paper aimed to evaluate the effects of dietary inclusion of green tea powder (GTP) on laying performance, egg quality, and blood biochemical parameters of laying hens. A total of 240 Jingfen No. 6 laying hens (age, 24 wk) were randomly allocated into 4 groups: control group (CON, basal diet), GTP0.
View Article and Find Full Text PDFBackground: Egg production is the most economically-important trait in layers as it directly influences benefits of the poultry industry. To better understand the genetic architecture of egg production, we measured traits including age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from 50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red hens using a linear mixed model.
View Article and Find Full Text PDFWith the extension of the egg-laying cycle, the rapid decline in egg quality at late laying period has aroused great concern in the poultry industry. Herein, we performed a genome-wide association study (GWAS) to identify genomic variations associated with egg quality, employing chicken 600 K high-density SNP arrays in a population of 1078 hens at 72 and 80 weeks of age. The results indicated that a genomic region spanning from 8.
View Article and Find Full Text PDFEgg weight (EW) is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS) in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80).
View Article and Find Full Text PDFBrown eggs are popular in many countries, and consumers regard eggshell brownness as an important indicator of egg quality. Brown eggshell color is controlled by polygene. However, the responsible genes and detailed molecular mechanisms regulating eggshell brownness have not been defined.
View Article and Find Full Text PDFSingle-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip.
View Article and Find Full Text PDFBackground: Efficient use of feed resources for farm animals is a critical concern in animal husbandry. Numerous genetic and nutritional studies have been conducted to investigate feed efficiency during the regular laying cycle of chickens. However, by prolonging the laying period of layers, the performance of feed utilization in the late-laying period becomes increasingly important.
View Article and Find Full Text PDFBrown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness.
View Article and Find Full Text PDFEggshell mechanical property traits such as eggshell breaking strength (ESS), eggshell thickness (EST) and eggshell weight (ESW) are most common and important indexes to evaluate eggshell quality in poultry industry. Uterine ion transporters involve in eggshell formation and might be associated with eggshell mechanical property traits. In this study, 99 SNPs in 15 ion transport genes were selected to genotype 976 pedigreed hens of Rhode Island Red.
View Article and Find Full Text PDF