As a noninvasive molecular analysis technique, ultraviolet resonance Raman (UVRR) spectroscopy represents a label-free method suitable for characterizing biomolecules. Using UVRR spectroscopy, we collected spectral fingerprints of UV absorbing cellular components, including proteins, nucleic acids, and unsaturated lipids. This knowledge was used to guide the assignment of spectra derived from intact human cell lines (i.
View Article and Find Full Text PDFWe report a rare case of synchronous double primary malignancies of the liver and ampulla. A 70-year-old white female was diagnosed with ampullary and hepatocellular carcinoma. The management and outcome of this rare case of synchronous double primary hepatic and periampullary malignancies, amenable to surgical resection is discussed.
View Article and Find Full Text PDFUltraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective.
View Article and Find Full Text PDFAs a minimally invasive therapeutic strategy, gold nanorod (AuNR)-based plasmonic photothermal therapy (PPT) has shown significant promise for the selective ablation of cancer cells. However, the heat stress experienced by cells during the PPT treatment produces significant amounts of reactive oxygen species (ROS), which could harm healthy, untreated tissue near the point of care by inducing irreversible damage to DNA, lipids, and proteins, potentially causing cellular dysfunction or mutation. In this study, we utilized biocompatible Pt-coated AuNRs (PtAuNRs) with different platinum shell thicknesses as an alternative to AuNRs often used for the treatment.
View Article and Find Full Text PDFDespite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development.
View Article and Find Full Text PDFPlasmonic nanoparticles are increasingly utilized in biomedical applications including imaging, diagnostics, drug delivery, and plasmonic photothermal therapy (PPT). PPT involves the rapid conversion of light into heat by plasmonic nanoparticles targeted to a tumor, causing hyperthermia-induced cell death. These nanoparticles can be passively targeted utilizing the enhanced permeability and retention effect, or actively targeted using proteins, peptides, or other small molecules.
View Article and Find Full Text PDFRecently, we utilized the optical properties of gold nanoparticles (AuNPs) for plasmonically enhanced Rayleigh scattering imaging spectroscopy (PERSIS), a new technique that enabled the direct observation of AuNP localization. In this study, we employ PERSIS by using AuNPs as light-scattering probes to compare the relative efficacy of three chemotherapeutic drugs on human oral squamous carcinoma cells. Although the drugs induced apoptotic cell death through differing mechanisms, morphological changes including cell membrane blebbing and shrinkage, accompanied by an increase in white light scattering, were visually evident.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) demonstrate great promise in biomedical applications due to their plasmonically enhanced imaging properties. When in close proximity, AuNPs plasmonic fields couple together, increasing their scattering cross-section due to the formation of hot spots, improving their imaging utility. In the present study, we modified the AuNPs surface with different peptides to target the nucleus and/or the cell as a whole, resulting in similar cellular uptake but different scattering intensities.
View Article and Find Full Text PDFCells Tissues Organs
December 2011
The impact of osteoclast activity on dental development has been previously analyzed but in the context of severe osteopetrosis. The present study sought to investigate the effects of osteoclast hypofunction,present in Msx2 gene knockin mutant mice (Msx2-/-), and hyperfunction, in transgenic mice driving RANK over-expression in osteoclast precursors (RANK(Tg)), on tooth development. In Msx2-/- mice, moderate osteopetrosis was observed, occurring exclusively in the periodontal region.
View Article and Find Full Text PDFCells Tissues Organs
February 2009
Craniofacial development involves a large number of genes involved in a complex time- and site-specific cascade of cellular crosstalk. Msx homeobox genes are expressed very early and have been implicated in multiple signaling processes. However, little is known about their role in postnatal growth and at adult stages.
View Article and Find Full Text PDFThe physiological function of the transcription factor Msx2 in tooth and alveolar bone was analysed using a knock-in transgenic mouse line. In this mouse line, the beta-galactosidase gene was used to disrupt Msx2: thus, beta-galactosidase expression was driven by the Msx2 promoter, but Msx2 was not produced. This allowed to monitor Msx2 expression using a beta-galactosidase assay.
View Article and Find Full Text PDF