Publications by authors named "Ainur Abukaev"

Article Synopsis
  • Self-healing polymers present a new solution to wear and tear in polymer products, addressing damage from mechanical stress and environmental factors.
  • A series of high-strength copolymers were developed using acrylamide, acrylic acid, and various metal complexes (Co(II), Ni(II), Cu(II)), and their properties were extensively analyzed through multiple physicochemical techniques.
  • Nickel-based metallopolymers showed the highest self-healing efficiency (up to 83%) while retaining impressive tensile strength, demonstrating the potential to enhance mechanical properties through different metal ions.
View Article and Find Full Text PDF

This work presents the synthesis and self-organization of the calamitic fluorinated mesogen, 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-4-iodobutoxy)ethanesulfonic acid, a potential model for perfluorosulfonic acid membranes (PFSA). The compound is derived in three steps from 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoro-2-iodoethoxy)ethanesulfonyl fluoride, achieving a 78% overall yield. The resulting compound exhibits intricate thermal behavior.

View Article and Find Full Text PDF

A series of semi-crystalline multi-block thermoplastic polyurethanes (TPU), containing poly(butylene adipate) (PBA), polycaprolactone (PCL) and their equimolar mixture (PBA/PCL) as a soft segment was synthesized. The changes in the physical-mechanical and thermal properties of the materials observed in the course of a 36-month storage at room temperature were related to the corresponding structural evolution. The latter was monitored using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXS) and mechanical tests (tensile strength test).

View Article and Find Full Text PDF

The influence of the hard segment nature on the crystallization kinetics of multi-block thermoplastic polyurethanes containing poly(butylene adipate) (PBA) as a soft segment was investigated. Using a combination of FTIR spectroscopy, time-domain H nuclear magnetic resonance (TD-NMR), differential scanning calorimetry (DSC), fast-scanning calorimetry (FSC) and wide-angle X-ray diffraction (WAXS), it was shown that aliphatic, cycloaliphatic and aromatic diisocyanates affect the phase separation efficiency of soft and hard segments. The best phase separation efficiency was observed for a sample containing aliphatic diisocyanate due to the development of a hydrogen bond network.

View Article and Find Full Text PDF

Novel hybrid materials of the PB--P(o-Bn-L-Tyr) and PI--P(o-Bn-L-Tyr) type (where PB: 1,4/1,2-poly(butadiene), PI: 3,4/1,2/1,4-poly(isoprene) and P(o-Bn-L-Tyr): poly(ortho-benzyl-L-tyrosine)) were synthesized through anionic and ring-opening polymerization under high-vacuum techniques. All final materials were molecularly characterized through infrared spectroscopy (IR) and proton and carbon nuclear magnetic resonance (H-NMR, C-NMR) in order to confirm the successful synthesis and the polydiene microstructure content. The stereochemical behavior of secondary structures (α-helices and β-sheets) of the polypeptide segments combined with the different polydiene microstructures was also studied.

View Article and Find Full Text PDF

The structural evolution of multiblock thermoplastic polyurethane ureas based on two polydiols, poly(1,4-butylene adipate (PBA) and poly-ε-caprolactone (PCL), as soft blocks and two diisocyanites, 2,4-toluylene diisocyanate (TDI) and 1,6-hexamethylene diisocyanate (HMDI), as hard blocks is monitored during in situ deformation by small- and wide-angle X-ray scattering. It was shown that the urethane environment determines the crystal structure of the soft block. Consequently, two populations of crystalline domains of polydiols are formed.

View Article and Find Full Text PDF