Publications by authors named "Ainsbury L"

Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results.

View Article and Find Full Text PDF

Introduction: Radium-223 dichloride ([Ra]RaCl), a radiopharmaceutical that delivers α-particles to regions of bone metastatic disease, has been proven to improve overall survival of men with metastatic castration resistant prostate cancer (mCRPC). mCRPC patients enrolled on the ADRRAD clinical trial are treated with a mixed field exposure comprising radium-223 (Ra) and intensity modulated radiotherapy (IMRT). While absorbed dose estimation is an important step in the characterisation of wider systemic radiation risks in nuclear medicine, uncertainties remain for novel radiopharmaceuticals such as Ra.

View Article and Find Full Text PDF

Generally, intentional exposure of pregnant women is avoided as far as possible in both medical and occupational situations. This paper aims to summarise available information on sources of radiation exposure of the embryo/foetus primarily in medical settings. Accidental and unintended exposure is also considered.

View Article and Find Full Text PDF

Purpose: The European Network of Biological and Physical Retrospective Dosimetry 'RENEB' has contributed to European radiation emergency preparedness. To give homogeneous dose estimation results, RENEB partners must harmonize their processes.

Materials And Methods: A first inter-comparison focused on biological and physical dosimetry was used to detect the outliers in terms of dose estimation.

View Article and Find Full Text PDF

Creating a sustainable network in biological and retrospective dosimetry that involves a large number of experienced laboratories throughout the European Union (EU) will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well-organised cooperative action involving EU laboratories will offer the best chance for fast and trustworthy dose assessments that are urgently needed in an emergency situation. To this end, the EC supports the establishment of a European network in biological dosimetry (RENEB).

View Article and Find Full Text PDF

In Europe, a network for biological dosimetry has been created to strengthen the emergency preparedness and response capabilities in case of a large-scale nuclear accident or radiological emergency. Through the RENEB (Realising the European Network of Biodosimetry) project, 23 experienced laboratories from 16 European countries will establish a sustainable network for rapid, comprehensive and standardised biodosimetry provision that would be urgently required in an emergency situation on European ground. The foundation of the network is formed by five main pillars: (1) the ad hoc operational basis, (2) a basis of future developments, (3) an effective quality-management system, (4) arrangements to guarantee long-term sustainability and (5) awareness of the existence of RENEB.

View Article and Find Full Text PDF

In September 1999 a criticality accident occurred in a uranium processing plant in Tokai-mura, Japan. During the accident, three workers (A, B and C) were exposed to high acute doses of neutrons and γ-rays: workers A and B fatally and worker C to an estimated whole body absorbed dose of 0.81 Gy neutrons and 1.

View Article and Find Full Text PDF

Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively.

View Article and Find Full Text PDF

Genetic factors are likely to affect individual cancer risk, but few quantitative estimates of heritability are available. Public health radiation protection policies do not in general take this potentially important source of variation in risk into account. Two surrogate cellular assays that relate to cancer susceptibility have been developed to gain an insight into the role of genetics in determining individual variation in radiosensitivity.

View Article and Find Full Text PDF