Deciphering inter- and intracellular signaling pathways is pivotal for understanding the intricate communication networks that orchestrate life's dynamics. Communication models involving bottom-up construction of protocells are emerging but often lack specialized compartments sufficiently robust and hierarchically organized to perform spatiotemporally defined signaling. Here, the modular construction of communicating polymer-based protocells designed to mimic the transduction of information in retinal photoreceptors is presented.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2023
The design of stimuli-responsive systems in nanomedicine arises from the challenges associated with the unsolved needs of current molecular drug delivery. Here, we present a delivery system with high spatiotemporal control and tunable release profiles. The design is based on the combination of an hydrophobic synthetic molecular rotary motor and a PDMS--PMOXA diblock copolymer to create a responsive self-assembled system.
View Article and Find Full Text PDF3-Benzylidene-indoline-2-ones play a prominent role in the pharmaceutical industry due to the diverse biomedical applications of oxindole heterocycles. Despite the extensive reports on their biological properties, these compounds have hardly been studied for their photochemical activity. Here, we present 3-benzylidene-indoline-2-ones as a promising class of photoswitches with high yields, robust photochemical switching with quantum yields reaching up to 50 % and potential for biological applications.
View Article and Find Full Text PDFOvercrowded alkene based molecular motors and switches constitute a unique class of photo-responsive systems due to their intrinsic chirality near the core C[double bond, length as m-dash]C bond, making them highly suitable candidates for the construction of light-switchable dynamic systems, , for controlling molecular motion, modulation of material chiroptical properties and supramolecular assembly. However, the lack of general design principles, along with the challenging synthesis of these molecules, precludes full exploitation of their dynamic structures. Therefore, systematic investigations of the key parameters are crucial for the further development of these systems.
View Article and Find Full Text PDFLung cancer (LC) is one of the most deadly cancers worldwide, with very low survival rates, mainly due to poor management, which has barely changed in recent years. Nanomedicines, especially gold nanomaterials, with their unique and size-dependent properties offer a potential solution to many challenges in the field. The versatility afforded by the shape, size, charge and surface chemistry of gold nanostructures allows them to be adapted for many applications in the diagnosis, treatment and imaging of LC.
View Article and Find Full Text PDF