Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information.
View Article and Find Full Text PDFPlants defend themselves from herbivory by either reducing damage (resistance) or minimizing its negative fitness effects with compensatory growth (tolerance). Herbivore pressure can fluctuate from year to year in an early secondary successional community, which can create temporal variation in selection for defence traits. We manipulated insect herbivory and successional age of the community as agents of natural selection in replicated common gardens with the perennial herb .
View Article and Find Full Text PDFVertically transmitted endophytic fungi can mitigate the negative effects of salinity encountered by their host grass and alter the competitive interactions between plant individuals. To experimentally study the interactive effects of the fungal endophyte on salt tolerance and intraspecific competition of its host plant, tall fescue , we subjected 15 maternal lines of each associated (E+) and free (E-) tall fescue to salt treatment and competition in the greenhouse and common garden. Then, to explore variation in endophyte incidence in natural populations of tall fescue, we surveyed 23 natural populations occurring on or near the Baltic Sea coast in Aland islands in southwestern Finland for endophyte incidence, distance to shore, and competitive environment.
View Article and Find Full Text PDFIntroduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots).
View Article and Find Full Text PDFPlant volatile organic compounds (VOCs) are major vehicles of information transfer between organisms and mediate many ecological interactions [1-3]. Altering VOC emission in response to herbivore damage has been hypothesized to be adaptive, as it can deter subsequent herbivores [4], attract natural enemies of herbivores [5], or transmit information about attacks between distant parts of the same plant [6-9]. Neighboring plants may also respond to these VOC cues by priming their own defenses against oncoming herbivory, thereby reducing future damage [10-12].
View Article and Find Full Text PDFHost specialization is considered a primary driver of the enormous diversity of herbivorous insects. Trade-offs in host use are hypothesized to promote this specialization, but they have mostly been studied in generalist herbivores. We conducted a multi-generation selection experiment to examine the adaptation of the specialist seed-feeding bug, Lygaeus equestris, to three novel host plants (Helianthus annuus, Verbascum thapsus and Centaurea phrygia) and to test whether trade-offs promote specialization.
View Article and Find Full Text PDFThe quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima.
View Article and Find Full Text PDFLocal adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations.
View Article and Find Full Text PDFInbreeding can profoundly affect the interactions of plants with herbivores as well as with the natural enemies of the herbivores. We studied how plant inbreeding affects herbivore oviposition preference, and whether inbreeding of both plants and herbivores alters the probability of predation or parasitism of herbivore eggs. In a laboratory preference test with the specialist herbivore moth Abrostola asclepiadis and inbred and outbred Vincetoxicum hirundinaria plants, we discovered that herbivores preferred to oviposit on outbred plants.
View Article and Find Full Text PDFBecause inbreeding is common in natural populations of plants and their herbivores, herbivore-induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations.
View Article and Find Full Text PDF