Publications by authors named "Ainhoa Lezamiz"

The translocation of mechanosensitive transcription factors (TFs) across the nuclear envelope is a crucial step in cellular mechanotransduction. Yet the molecular mechanisms by which external mechanical cues control the nuclear shuttling dynamics of TFs through the nuclear pore complex (NPC) to activate gene expression are poorly understood. Here, we show that the nuclear import rate of myocardin-related transcription factor A (MRTFA) - a protein that regulates cytoskeletal dynamics via the activation of the TF serum response factor (SRF) - inversely correlates with the protein's nanomechanical stability and does not relate to its thermodynamic stability.

View Article and Find Full Text PDF

Understanding the molecular mechanisms governing protein-nucleic acid interactions is fundamental to many nuclear processes. However, how nucleic acid binding affects the conformation and dynamics of the substrate protein remains poorly understood. Here we use a combination of single molecule force spectroscopy AFM and biochemical assays to show that the binding of TG-rich ssDNA triggers a mechanical switch in the RRM1 domain of TDP-43, toggling between an entropic spring devoid of mechanical stability and a shock absorber bound-form that resists unfolding forces of ∼40 pN.

View Article and Find Full Text PDF

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus.

View Article and Find Full Text PDF

Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency.

View Article and Find Full Text PDF

Zinc fingers are highly ubiquitous structural motifs that provide stability to proteins, thus contributing to their correct folding. Despite the high thermodynamic stability of the ZnCys4 centers, their kinetic properties display remarkable lability. Here, we use a combination of protein engineering with single molecule force spectroscopy atomic force microscopy (AFM) to uncover the surprising mechanical lability (∼90 pN) of the individual Zn-S bonds that form the two equivalent zinc finger motifs embedded in the structure of the multidomain DnaJ chaperone.

View Article and Find Full Text PDF

Understanding the directionality and sequence of protein unfolding is crucial to elucidate the underlying folding free energy landscape. An extra layer of complexity is added in metalloproteins, where a metal cofactor participates in the correct, functional fold of the protein. However, the precise mechanisms by which organometallic interactions are dynamically broken and reformed on (un)folding are largely unknown.

View Article and Find Full Text PDF