Publications by authors named "Aine Monaghan"

Non-O157 Shiga toxin-producing Escherichia coli (STECs) are not as well characterized as O157 STEC cases, despite their similar prevalence in many countries. Hence, the objective of this study was to investigate the phenotypic and genotypic basis of multidrug resistance (MDR) in non-O157 STEC farm- and abattoir-sourced isolates and assess the potential dissemination of these MDR profiles in vitro. Susceptibility testing to 20 antimicrobials was performed on 146 non-O157 STECs isolated from farm and abattoir environments.

View Article and Find Full Text PDF

Thirty-nine Shiga toxin-producing Escherichia coli (STEC) O113 Irish farm, abattoir, and clinical isolates were analyzed in conjunction with eight Australian, New Zealand, and Norwegian strains for H (flagellar) antigens, virulence gene profile (eaeA, hlyA, tir, espA, espB katP, espP, etpD, saa, sab, toxB, iha, lpfA(O157/OI-141,) lpfA(O113,) and lpfA(O157/OI-154)), Shiga toxin gene variants (stx(1c), stx(1d), stx(2), stx(2c), stx(2dact), stx(2e), stx(2f,) and stx(2g)) and were genotyped using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). All of the Irish strains were O113:H4, regardless of source, while all non-Irish isolates carried the H21 flagellar antigen. The stx(1) gene was present in 30 O113:H4 strains only, whereas the stx(2d) gene was common to all isolates regardless of source.

View Article and Find Full Text PDF

Four hundred and fifty beef animal hides and a similar number of carcasses were screened for STEC in 3 beef abattoirs over a 12 month period using PCR and culture based methods. 67% (301/450) of hides and 27% (122/450) of carcasses were STEC PCR positive. Forty isolates representing 12 STEC serotypes (O5:H-, O13:H2, O26:H11, O33:H11, O55:H11, O113:H4, O128:H8, O136:H12, O138:H48, O150:H2, O168:H8 and ONT:H11) and 15 serotype-virulotype combinations were identified.

View Article and Find Full Text PDF

Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are clinically significant food-borne pathogens. However, there is a dearth of information on serotype prevalence and virulence gene distribution, data essential for the development of public health protection monitoring and control activities for the meat and dairy industries. Thus, the objective of this study was to examine the prevalence of non-O157 STEC on beef and dairy farms and to characterize the isolates in terms of serotype and virulence markers.

View Article and Find Full Text PDF

The O-antigen gene clusters of Escherichia coli serogroups O2 and O28ac were sequenced, and PCR assays were developed to identify strains belonging to these 2 serogroups. Sixteen and 8 open reading frames were mapped to these loci in E. coli O2:H4 U 9-41 and E.

View Article and Find Full Text PDF

The transferability of antimicrobial resistance from lactic acid bacteria (LAB) to potential pathogenic strains was studied using in vitro methods and mating in a food matrix. Five LAB donors containing either erythromycin or tetracycline resistance markers on transferable elements were conjugally mated with LAB (Enterococcus faecalis, Lactococcus lactis) and pathogenic strains (Listeria spp., Salmonella ssp.

View Article and Find Full Text PDF

Three wild-type dairy isolates of lactic acid bacteria (LAB) and one Lactococcus lactis control strain were analyzed for their ability to transfer antibiotic resistance determinants (plasmid or transposon located) to two LAB recipients using both in vitro methods and in vivo models. In vitro transfer experiments were carried out with the donors and recipients using the filter mating method. In vivo mating examined transfer in two natural environments, a rumen model and an alfalfa sprout model.

View Article and Find Full Text PDF

Plate, filter and broth mating techniques were assessed over a range of pHs using three Lactococcus lactis donor strains (one with an erythromycin resistance marker and two with tetracycline resistance markers, all located on transferable genetic elements) and one L. lactis recipient strain. Transconjugants were confirmed using antibiotic selection, E-tests to determine MICs, PCR assays to detect the corresponding marker genes, DNA fingerprinting by pulsed-field gel electrophoresis (PFGE), and Southern blotting.

View Article and Find Full Text PDF

Optimal conditions and a standardized method for conjugation between two model lactococcal strains, Lactococcus lactis SH4174 (pAMbeta1-containing, erythromycin resistant donor) and L. lactis Bu2-60 (plasmid-free, erythromycin sensitive recipient), were developed and tested in a inter-laboratory experiments involving five laboratories from different countries. The ultimate goal of the study was to assess the microbial potential of antibiotic resistance transfer among Lactic Acid Bacteria (LAB).

View Article and Find Full Text PDF