Publications by authors named "Aine B Henley"

Exosomes and microvesicles (EMV) are lipid bilayer-enclosed structures, released by cells and involved in intercellular communication through transfer of proteins and genetic material. EMV release is also associated with various pathologies, including cancer, where increased EMV release is amongst other associated with chemo-resistance and active transfer of pro-oncogenic factors. Recent studies show that EMV-inhibiting agents can sensitize cancer cells to chemotherapeutic agents and reduce cancer growth .

View Article and Find Full Text PDF

Resistance to chemotherapy is a challenging problem for treatment of cancer patients and autophagy has been shown to mediate development of resistance. In this study we systematically screened a library of 306 known anti-cancer drugs for their ability to induce autophagy using a cell-based assay. 114 of the drugs were classified as autophagy inducers; for 16 drugs, the cytotoxicity was potentiated by siRNA-mediated knock-down of Atg7 and Vps34.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a remarkably heterogenic childhood tumor of the sympathetic nervous system with clinical behavior ranging from spontaneous regression to poorly differentiated tumors and metastasis. is amplified in 20% of cases and correlates with an undifferentiated, aggressive phenotype and poor prognosis. Estrogen receptor alpha (ERα) and the nerve growth factor (NGF) receptors TrkA and p75 are involved in neuronal differentiation and survival.

View Article and Find Full Text PDF

is a member of the family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues.

View Article and Find Full Text PDF

Withania somnifera extracts are known for their anti-cancerous, anti-inflammatory and antioxidative properties. One of their mechanisms of actions is to modulate mitochondrial function through increasing oxidative stress. Recently 'priming' has been suggested as a potential mechanism for enhancing cancer cell death.

View Article and Find Full Text PDF