Modulating the kappa-opioid receptor (KOR) is a promising strategy for treating various human diseases. KOR agonists show potential for treating pain, pruritus, and epilepsy, while KOR antagonists show potential for treating depression, anxiety, and addiction. The diterpenoid Salvinorin A (SalA), a secondary metabolite of , is a potent and selective KOR agonist.
View Article and Find Full Text PDFDespite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities.
View Article and Find Full Text PDFKappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo.
View Article and Find Full Text PDF