Publications by authors named "Aina Segues"

IL-12 is a potent cytokine for cancer immunotherapy. However, its systemic delivery as a recombinant protein has shown unacceptable toxicity in the clinic. Currently, the intratumoral injection of IL-12-encoding mRNA or DNA to avoid such side effects is being evaluated in clinical trials.

View Article and Find Full Text PDF

Unlabelled: In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models.

View Article and Find Full Text PDF
Article Synopsis
  • T cell engager (TCE) antibodies are innovative cancer treatments that connect T-cells to tumor cells by binding to both T-cell receptors (CD3E) and tumor markers (TAA).
  • The study focuses on a bispecific antibody format (IgG-like Fab x sdAb-Fc) that targets mEGFR on tumors and mCD3E on T-cells, analyzing the effect of hinge design in the sdAb.
  • The findings reveal that a shorter hinge (23 amino acids) enhances tumor cell elimination and T-cell activation compared to a longer hinge (39 amino acids), suggesting that small design modifications can significantly boost the effectiveness of these therapeutic antibodies.
View Article and Find Full Text PDF

The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens.

View Article and Find Full Text PDF

Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint inhibitors and CAR T-cell therapy are key strategies utilizing the immune system to combat cancer, aiming to enhance their effectiveness with new biotechnologies like mRNA technology.* -
  • The review discusses the fundamentals of mRNA biotechnology and recent progress in using mRNA for targeted delivery of immune-stimulating treatments, including antibodies and cytokines.* -
  • mRNA-based nanomedicines show promise for improving immunotherapy by enabling rapid drug development and localized expression of immune molecules, drawing on the success of COVID-19 vaccines to demonstrate viability and potential for better clinical outcomes.*
View Article and Find Full Text PDF

Due to the technical innovations in generating bispecific antibodies (BsAbs) in recent years, BsAbs have become important reagents for diagnostic and therapeutic applications. However, the difficulty of producing a heterodimer consisting of two different arms with high yield and purity constituted a major limitation for their application in academic and clinical settings. Here, we describe a novel Fc-containing BsAb format (Fab × sdAb-Fc) composed of a conventional antigen-binding fragment (Fab), and a single domain antibody (sdAb), which avoids heavy-light chain mis-pairing during antibody assembly.

View Article and Find Full Text PDF