Publications by authors named "Aimond F"

Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by the death of motoneurons. Several mutations in the KIF5A gene have been identified in patients with ALS. Some mutations affect the splicing sites of exon 27 leading to its deletion (Δ27 mutation).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Recently, genome-wide association studies identified KIF5A as a new ALS-causing gene. KIF5A encodes a protein of the kinesin-1 family, allowing the anterograde transport of cargos along the microtubule rails in neurons.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described.

View Article and Find Full Text PDF
Article Synopsis
  • Diffuse grade II IDH-mutant gliomas are slow-growing brain tumors that can progress into more aggressive forms and exhibit diversity among their cell types, but distinguishing these subtypes remains challenging due to a lack of reliable markers.
  • The study identifies two distinct cell populations in these gliomas using the SOX9 (astrocyte-like) and OLIG1 (oligodendrocyte-like) transcription factors, with each population displaying unique molecular markers and active signaling pathways impacting their behavior.
  • NOTCH1 activation was found to reduce oligodendrocytic markers and overall cell proliferation, while BMP treatment altered gene expression patterns, leading to a better understanding of the roles these distinct
View Article and Find Full Text PDF

Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Na), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons.

View Article and Find Full Text PDF

The transient receptor potential Melastatin 4 (TRPM4) channel is a calcium-activated non-selective cation channel expressed widely. In the heart, using a knock-out mouse model, the TRPM4 channel has been shown to be involved in multiple processes, including β-adrenergic regulation, cardiac conduction, action potential duration and hypertrophic adaptations. This channel was recently shown to be involved in stress-induced cardiac arrhythmias in a mouse model overexpressing TRPM4 in ventricular cardiomyocytes.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the lack of functional dystrophin. DMD is associated with progressive dilated cardiomyopathy, eventually leading to heart failure as the main cause of death in DMD patients. Although several molecular mechanisms leading to the DMD cardiomyocyte (DMD-CM) death were described, mostly in mouse model, no suitable human CM model was until recently available together with proper clarification of the DMD-CM phenotype and delay in cardiac symptoms manifestation.

View Article and Find Full Text PDF

Background And Purpose: The artemisinin derivative, artemether, has antimalarial activity with potential neurotoxic and cardiotoxic effects. Artemether in nanocapsules (NC-ATM) is more efficient than free artemether for reducing parasitaemia and increasing survival of Plasmodium berghei-infected mice. NCs also prevent prolongation of the QT interval of the ECG.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome (MetS), elevating cardiovascular risks, is increasing worldwide, with no available global therapeutic options. The intake of plain, mineral or biocompatible modified waters was shown to prevent some MetS features. This study was designed to analyze, in mice fed a high fat and sucrose diet (HFSD), the effects on MetS features of the daily intake of a reverse osmosed, weakly remineralized, water (OW) and of an OW dynamized by a physical processing (ODW), compared to tap water (TW).

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure with preserved ejection fraction (HFpEF) is a serious condition that often leads to bad health and can be life-threatening.
  • In the study, researchers looked at how heart cells work in rats that were made to have HFpEF, showing changes like high blood pressure and stiff heart walls.
  • They discovered that the way calcium interacts in heart cells is different in HFpEF, leading to problems with the heart's ability to fill and pump blood properly, even though some things remained normal.
View Article and Find Full Text PDF

Chagas disease is a neglected parasitic disease caused by the protozoan Trypanosoma cruzi. New antitrypanosomal options are desirable to prevent complications, including a high rate of cardiomyopathy. Recently, a natural substance, lychnopholide, has shown therapeutic potential, especially when encapsulated in biodegradable polymeric nanocapsules.

View Article and Find Full Text PDF

Cardiac hypertrophy (CH) is an adaptive process that exists in two distinct forms and allows the heart to adequately respond to an organism's needs. The first form of CH is physiological, adaptive and reversible. The second is pathological, irreversible and associated with fibrosis and cardiomyocyte death.

View Article and Find Full Text PDF

Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways.

View Article and Find Full Text PDF

Angiotensin-converting enzyme inhibitors (ACE-I) improve clinical outcome in patients with myocardial infarction (MI) and chronic heart failure. We investigated potential anti-arrhythmic (AA) benefits in a mouse model of ischemic HF. We hypothesized that normalization of diastolic calcium (Ca(2+)) by ACE-I may prevent Ca(2+)-dependent reduction of inward rectifying K(+) current (IK1) and occurrence of arrhythmias after MI.

View Article and Find Full Text PDF
Article Synopsis
  • TRPM4 is a protein in the heart that helps control electrical signals and can cause problems if mutated, linked to conditions like Brugada syndrome.
  • Researchers studied mice without the TRPM4 gene and found they had enlarged hearts but no signs of damage or disease, showing differences in heart cells compared to normal mice.
  • The TRPM4-less mice also experienced issues with heart electrical signals, suggesting that this protein is important for healthy heart function.
View Article and Find Full Text PDF

Aims: Clinical studies failed to prove convincingly efficiency of intravenous infusion of neseritide during heart failure and evidence suggested a pro-adrenergic action of B-type natriuretic peptide (BNP). However, subcutaneous BNP therapy was recently proposed in heart failure, thus raising new perspectives over what was considered as a promising treatment. We tested the efficiency of a combination of oral β1-adrenergic receptor blocker metoprolol and subcutaneous BNP infusion in decompensated heart failure.

View Article and Find Full Text PDF

Aims: During heart failure (HF), the left ventricle (LV) releases B-type natriuretic peptide (BNP), possibly contributing to adverse cardiovascular events including ventricular arrhythmias (VAs) and LV remodelling. We investigated the cardiac effects of chronic BNP elevation in healthy mice and compared the results with a model of HF after myocardial infarction (PMI mice).

Methods And Results: Healthy mice were exposed to circulating BNP levels (BNP-Sham) similar to those measured in PMI mice.

View Article and Find Full Text PDF

Prevention of adverse cardiac remodeling after myocardial infarction (MI) remains a therapeutic challenge. Angiotensin-converting enzyme inhibitors (ACE-I) are a well-established first-line treatment. ACE-I delay fibrosis, but little is known about their molecular effects on cardiomyocytes.

View Article and Find Full Text PDF

Neurohormonal imbalance is a key determinant of the progression of heart failure (HF), which results in an elevated risk of mortality. A better understanding of mechanisms involved may influence treatment strategies. The incidence and prevalence of HF are lower in women.

View Article and Find Full Text PDF
Article Synopsis
  • The insulin IGF-1-PI3K-Akt signaling pathway may enhance heart function by affecting calcium handling through Akt, but the specific mechanisms were unclear.
  • Akt has been found to regulate the density of L-type Ca(2+) channels (LTCC) by affecting the protein levels of Ca(v)alpha1, which is crucial for calcium flow in heart muscle cells.
  • The phosphorylation of Ca(v)beta2 by Akt prevents the degradation of Ca(v)alpha1, leading to higher LTCC density and potentially improving calcium entry and heart contraction.
View Article and Find Full Text PDF

Diabetes is associated with increased risk of diastolic dysfunction, heart failure, QT prolongation and rhythm disturbances independent of age, hypertension or coronary artery disease. Although these observations suggest electrical remodeling in the heart with diabetes, the relationship between the metabolic and the functional derangements is poorly understood. Exploiting a mouse model (MHC-PPARalpha) with cardiac-specific overexpression of the peroxisome proliferator-activated receptor alpha (PPARalpha), a key driver of diabetes-related lipid metabolic dysregulation, the experiments here were aimed at examining directly the link(s) between alterations in cardiac fatty acid metabolism and the functioning of repolarizing, voltage-gated K(+) (Kv) channels.

View Article and Find Full Text PDF

Cellular electrophysiological remodeling of the infarcted heart may lead to the deterioration of cardiac function and/or to arrhythmias. The present study was designed to characterize the functional expression of the hyperpolarization-activated current (I(f)) and its modulation by beta(1)-, beta(2)- and beta(3)-adrenoceptor (AR) subtypes, in patch-clamped ventricular myocytes isolated from the heart of post-myocardial infarcted (PMI) rats and sham-operated control (SHAM) rats. Maximum specific conductance of I(f) was significantly higher in left ventricular myocytes (LVM) from PMI rats compared to right ventricular myocytes from PMI rats as well as LVM and RVM from SHAM rats.

View Article and Find Full Text PDF

Previous studies have demonstrated a role for voltage-gated K+ (Kv) channel alpha subunits of the Kv4 subfamily in the generation of rapidly inactivating/recovering cardiac transient outward K+ current, I(to,f), channels. Biochemical studies suggest that mouse ventricular I(to,f) channels reflect the heteromeric assembly of Kv4.2 and Kv4.

View Article and Find Full Text PDF