Publications by authors named "Aimi Fuyuki"

Prosaposin is a glycoprotein widely conserved in vertebrates, and it acts as a precursor for saposins that accelerate hydrolysis in lysosomes or acts as a neurotrophic factor without being processed into saposins. Neurogenesis in the olfactory neuroepithelia, including the olfactory epithelium (OE) and the vomeronasal epithelium (VNE), is known to occur throughout an animal's life, and mature olfactory neurons (ORNs) and vomeronasal receptor neurons (VRNs) have recently been revealed to express prosaposin in the adult olfactory organ. In this study, the expression of prosaposin in the rat olfactory organ during postnatal development was examined.

View Article and Find Full Text PDF

The islets of Langerhans are clusters of endocrine cells surrounded by exocrine acinar cells in the pancreas. Prosaposin is a housekeeping protein required for normal lysosomal function, but its expression level is significantly different among tissues. Prosaposin also exists in various body fluids including serum.

View Article and Find Full Text PDF

Prosaposin is a glycoprotein conserved widely in vertebrates, because it is a precursor for saposins that are required for normal lysosomal function and thus for autophagy, and acts as a neurotrophic factor. Most tetrapods possess two kinds of olfactory neuroepithelia, namely, the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). This study examined the expression patterns of prosaposin and its candidate receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in mouse OE and VNE by immunofluorescence and in situ hybridization.

View Article and Find Full Text PDF

Prosaposin is a precursor of lysosomal hydrolases activator proteins, saposins, and also acts as a secretory protein that is not processed into saposins. Prosaposin elicits neurotrophic function via G protein-coupled receptor (GPR) 37, and prosaposin deficiency causes abnormal vestibuloauditory end-organ development. In this study, immunohistochemistry was used to examine prosaposin and GPR37 expression patterns in the mouse cochlear and vestibular nuclei.

View Article and Find Full Text PDF