Publications by authors named "Aimeric Cabrie"

Background: Nitric-oxide synthases (NOS) catalyze the formation of NO using NADPH as electron donor. We have recently designed and synthesized a new series of two-photon absorbing and photoactivatable NADPH analogues (NT). These compounds bear one or two carboxymethyl group(s) on the 2'- or/and 3'-position(s) of the ribose in the adenosine moiety, instead of a 2'-phosphate group, and differ by the nature of the electron donor in their photoactivatable chromophore (replacing the nicotinamide moiety).

View Article and Find Full Text PDF

Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression.

View Article and Find Full Text PDF

Ribonucleotide reductase (RnR) is a key enzyme synthesizing deoxyribonucleotides for DNA replication and repair. In mammals, the R1 catalytic subunit forms an active complex with either one of the two small subunits R2 and p53R2. Expression of R2 is S phase-specific and required for DNA replication.

View Article and Find Full Text PDF