is one of the perturbing multidrug resistant (MDR) and ESKAPE pathogens contributing to the mounting morbidity, mortality and extended rate of hospitalization. Its virulence, often regulated by quorum sensing (QS) reinforces the need to explore alternative and prospective antivirulence agents, relatively from plants secondary metabolites. Computer aided drug discovery using molecular modelling techniques offers advantage to investigate prospective drugs to combat MDR pathogens.
View Article and Find Full Text PDFBlocking oncogenic signaling of B-cell receptor (BCR) has been explored as a viable strategy in the treatment of diffuse large B-cell lymphoma. Masitinib is shown to multitarget LYN, FYN and BLK kinases that propagate BCR signals to downstream effectors. However, the molecular mechanisms of its selectivity and pan-inhibition remain elusive.
View Article and Find Full Text PDFIntroduction: Amidst the numerous effective therapeutic options available for the treatment of Diffuse Large B-cell Lymphoma (DLBCL), about 30-40% of patients treated with first-line chemoimmunotherapy still experience a relapse or refractory DLBCL. This has necessitated a continuous search for new therapeutic agents to augment the existing therapeutic arsenal.
Methods: The dawn of Computer-Aided Drug Design (CADD) in the drug discovery process has accounted for persistency in the application of computational approaches either alone or in combinatorial strategies with experimental methods towards the identification of potential hit compounds with high therapeutic efficacy in abrogating DLBCL.