To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO(2)-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state.
View Article and Find Full Text PDFPGRL1 RNA and protein levels are increased in iron-deficient Chlamydomonas reinhardtii cells. In an RNAi strain, which accumulates lower PGRL1 levels in both iron-replete and -starved conditions, the photosynthetic electron transfer rate is decreased, respiratory capacity in iron-sufficient conditions is increased, and the efficiency of cyclic electron transfer under iron-deprivation is diminished. Pgrl1-kd cells exhibit iron deficiency symptoms at higher iron concentrations than wild-type cells, although the cells are not more depleted in cellular iron relative to wild-type cells as measured by mass spectrometry.
View Article and Find Full Text PDFChlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella.
View Article and Find Full Text PDFPhotosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp.
View Article and Find Full Text PDF