Publications by authors named "Ailsa Holroyd"

B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCβII upregulation and generation of a poor-prognostic CLL-like disease.

View Article and Find Full Text PDF

MYC and RUNX oncogenes each trigger p53-mediated failsafe responses when overexpressed in vitro and collaborate with p53 deficiency in vivo. However, together they drive rapid onset lymphoma without mutational loss of p53. This phenomenon was investigated further by transcriptomic analysis of premalignant thymus from RUNX2/MYC transgenic mice.

View Article and Find Full Text PDF

Purpose: To determine whether inhibition of mTOR kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL).

Experimental Design: Stratification of mTOR activity was carried out in patients with primary CLL samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B-cell receptor (BCR) ligation.

View Article and Find Full Text PDF

Mechanistic target for rapamycin (mTOR) is a serine/threonine protein kinase that forms two distinct complexes mTORC1 and mTORC2, integrating mitogen and nutrient signals to regulate cell survival and proliferation; processes which are commonly deregulated in human cancers. mTORC1 and mTORC2 have divergent molecular associations and cellular functions: mTORC1 regulates in mRNA translation and protein synthesis, while mTORC2 is involved in the regulation of cellular survival and metabolism. Through AKT phosphorylation/activation, mTORC2 has also been reported to regulate cell migration.

View Article and Find Full Text PDF

Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs.

View Article and Find Full Text PDF

The use of allogeneic haematopoietic stem cell transplantation (Allo-HSCT) is a standard treatment option for many patients with haematological malignancies. Historically, patients requiring intensive care unit (ICU) admission for transplant-related toxicities have fared extremely poorly, with high ICU mortality rates. Little is known about the impact of reduced intensity Allo-HSCT conditioning regimens in older patients on the ICU and subsequent long-term outcomes.

View Article and Find Full Text PDF

Multipotent haematopoietic stem cells pass through stages of differentiation with the progressive loss of developmental options leading to the production of terminally differentiated mature blood cells. This process is regulated by soluble cytokines binding to a ligand specific cell surface receptor on a precursor cell. Key to signal transduction are tyrosine kinase proteins which can be divided into two sub families, the receptor protein tyrosine kinases which are transmembrane receptors and retain an intact catalytic kinase domain and the cytoplasmic tyrosine kinases which bind to cytokine receptors.

View Article and Find Full Text PDF