Dysregulation of receptor tyrosine kinases (RTKs) has been shown to correlate with cancer cell proliferation and drug resistance. Thus, monitoring the activity of RTKs at a chemical level could provide new biomedical insights and methods to assess the drug efficacy. However, direct monitoring of kinase activity is challenging and most commonly relies on techniques such as Western blotting and ELISAs.
View Article and Find Full Text PDFPatient derived organoids have the potential to improve the physiological relevance of disease models. However, the 3D architecture of these self-assembled cellular structures makes probing their biochemistry more complex than in traditional 2D culture. We explore the application of surface enhanced Raman scattering microsensors (SERS-MS) to probe local pH gradients within patient derived airway organoid cultures.
View Article and Find Full Text PDFThis study uses X-ray crystallography, theory and Langmuir isotherm analysis to explore the conformations and molecular packing of alkyl all- 2,3,4,5,6-pentafluorocyclohexyl motifs, which are prepared by direct aryl hydrogenations from alkyl- or vinyl-pentafluoroaryl benzenes. Favoured conformations retain the more polar triaxial C-F bond arrangement of the all- 2,3,4,5,6-pentafluorocyclohexyl ring systems with the alkyl substituent adopting an equatorial orientation, and accommodating strong supramolecular interactions between rings. Langmuir isotherm analysis on a water subphase of a long chain fatty acid and alcohol carrying terminal all- 2,3,4,5,6-pentafluorocyclohexyl rings do not show any indication of monolayer assembly relative to their cyclohexane analogues, instead the molecules appear to aggregate and form higher molecular assemblies prior to compression.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
March 2021
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives.
View Article and Find Full Text PDFSucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives.
View Article and Find Full Text PDF