Background: The prevalence of diabetes and its association with microcirculatory dysfunction presents a significant challenge in contemporary global health. Addressing this nexus is crucial for developing targeted therapeutic interventions.
Aim: To trace the progression and delineate the current state of interdisciplinary research concerning diabetes and microcirculation.
Breast cancer is one of the most prevalent malignant tumors in women, but the side effects and drug resistance limit the long-term effectiveness of existing drugs. To address these issues, we designed and synthesized a series of novel mono- and bis-indole-substituted 3-indolylbenzoquinone derivatives and evaluated their inhibitory activity against breast cancer. Among them, compound 1b demonstrated the most potent inhibitory activity against the MDA-MB-231 breast cancer cell line (IC = 3.
View Article and Find Full Text PDFThe mitochondrial calcium uniporter (MCU) complex mediates Ca entry into mitochondria, which plays a crucial role in regulating cellular energy metabolism and apoptosis. Dysregulation of MCU is implicated in various diseases, such as neurodegenerative disorders, cardiac diseases, and cancer. Despite its importance, developing specific and clinically viable MCU inhibitors is challenging.
View Article and Find Full Text PDFPurpose: To conduct a scoping review of the related research on cognitive frailty (CF) in maintenance hemodialysis (MHD) patients, so as to provide a basis for early diagnosis, treatment and intervention of CF in MHD patients.
Methods: Utilizing a scoping review approach, we searched PubMed, Embase, The Cochrane Library, Web of Science, CINAHL, the China Biological Medicine Database (CBM), China National Knowledge Infrastructure (CNKI), Wanfang, and Weipu (VIP) for literature on CF in MHD patients up to October 20, 2024. Two researchers conducted independent screening and data extraction of the literature's fundamental characteristics.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFCalmodulin-binding transcription activator (), as one of the transcription factors, is involved in performing important functions in modulating plant stress responses and development in a Ca/CaM-driven modus. However, genome-scale analysis of has not been systemically investigated in roses. Rose ( Jacq.
View Article and Find Full Text PDFLoss to follow-up (LTFU) in antiretroviral therapy (ART) poses significant challenges in the management of HIV/AIDS. This study aims to identify socio-demographic and clinical factors influencing LTFU among patients undergoing ART in Luzhou, China, and to develop a predictive model for LTFU using Cox risk regression analysis. In this retrospective cohort study, data from 8,770 patients diagnosed with HIV infection between January 1, 2018 and December 31, 2022 who were enrolled in the national free ART program were analyzed.
View Article and Find Full Text PDFBackground: Pulmonary hypertension (PH) is a malignant vascular disease characterized by pulmonary arterial remodeling. Neural cell adhesion molecule 1 (NCAM1) is a cell surface glycoprotein that is involved in a variety of diseases, including cardiovascular disease. However, the role of NCAM1 in PH remains underexplored.
View Article and Find Full Text PDFHistone modifications are canonical epigenetic modifications mediating plant growth and development. Specially, histone modifications play important regulatory roles in plant fruit ripening, directly affecting fruit color changes, soluble sugar accumulation, and fruit softening. In this review, we focus on the effects of histone acetylation and methylation during fruit ripening.
View Article and Find Full Text PDFNitric oxide (NO) and hydrogen sulphide (HS) play important roles in plant growth, development and environmental adaptation. Currently, there is few information on the mechanism by which HS may be involved in NO-induced salt tolerance. In this study, cucumber was used to investigate the role of NO and HS and their relationship under salt stress.
View Article and Find Full Text PDFMyocardial infarction (MI), a widespread cardiovascular issue, mainly occurs due to blood clot formation in the coronary arteries, which reduces blood flow to the heart muscle and leads to cell death. Incorporating exercise into a lifestyle can significantly benefit recovery and reduce the risk of future cardiac events for MI patients. Non-coding RNAs (ncRNAs) play various roles in the effects of exercise on myocardial infarction (MI).
View Article and Find Full Text PDFMonascus is a widely used natural microorganism in our country, which can produce useful secondary metabolites. Studies have shown that the nitrogen source directly affects the growth, reproduction, and secondary metabolites of Monascus. As a global transcriptional regulator of nitrogen metabolism, MareA gene is involved in the regulation of secondary metabolism.
View Article and Find Full Text PDFAluminum (Al) toxicity in acidic soils leads to a considerable reduction in crop yields. MicroRNAs play essential roles in abiotic stress responses, but little is known of their role in the response of peanut (Arachis hypogea L.) to Al stress.
View Article and Find Full Text PDFDNA methylation plays an important role in regulating plant growth, development and gene expression. However, less is known about the response of DNA methyltransferase and demethylase genes to various stresses. In this study, the effects of abiotic stresses on DNA methylation gene expression patterns in tomato seedlings were investigated.
View Article and Find Full Text PDFEpendymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats.
View Article and Find Full Text PDFRegen Biomater
September 2024
A light-cured bioactive composite, TheraCal LC, is easy to handle and fast-setting. But poor water absorption restricted its bioactivity when applied in direct pulp capping (DPC). Enhancing the water absorption of resin-based bioactive materials may be key to optimizing biomineralization procedure of light-cured bioactive materials.
View Article and Find Full Text PDFAs the elderly population expands, the pursuit of therapeutics to reduce morbidity and extend lifespan has become increasingly crucial. As an FDA-approved drug for chronic cholestatic liver diseases, tauroursodeoxycholic acid (TUDCA), a natural bile acid, offers additional health benefits beyond liver protection. Here, we show that TUDCA extends the lifespan and healthspan of C.
View Article and Find Full Text PDFGastroenterol Rep (Oxf)
September 2024
Allergol Immunopathol (Madr)
September 2024
Allergic asthma is an important public health problem and is a complicated respiratory sickness that is characterized by bronchial inflammation, bronchoconstriction, and breathlessness. Asthma is orchestrated by type 2 immune response and remodeling is one of the important outputted problem in chronic asthma. Thymol is a naturally occurring monocyclic phenolic, it has a series of biological properties, and its immunomodulatory and anti-remodeling effects on allergic asthma were evaluated.
View Article and Find Full Text PDFCoronary microvascular dysfunction (CMD) refers to structural and functional abnormalities of the microcirculation that impair myocardial perfusion. CMD plays a pivotal role in numerous cardiovascular diseases, including myocardial ischemia with non-obstructive coronary arteries, heart failure, and acute coronary syndromes. This review summarizes recent advances in CMD pathophysiology, assessment, and treatment strategies, as well as ongoing challenges and future research directions.
View Article and Find Full Text PDFDendritic cells (DCs) are crucial in initiating and shaping both innate and adaptive immune responses. Clinical studies and experimental models have highlighted their significant involvement in various autoimmune diseases, positioning them as promising therapeutic targets. Nicotinamide (NAM), a form of vitamin B3, with its anti-inflammatory properties, has been suggested, while the involvement of NAM in DCs regulation remains elusive.
View Article and Find Full Text PDFObjective: Abnormal tumor vascular network contributes to aberrant blood perfusion and reduced oxygenation in tumors, which lead to poor efficacy of chemotherapy and radiotherapy. We aimed to explore the effects of the tumor-derived exosomes (TDEs) and C188-9 (a small molecule inhibitor of signal transducer and activator of transcription 3, STAT3) on tumor microvascular hemodynamics and determine which blood flow oscillations for various frequency intervals are responsible for these changes.
Methods: Microvascular hemodynamics parameters were recorded using a PeriFlux 6000 EPOS system in tumor surface in a nude mouse subcutaneous xenograft model.
Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducted an investigation into the variations in renal function and related biological oscillators. Using the genetically diverse mouse models BALB/c, C57BL/6, and Kunming, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C levels were quantified to investigate potential divergences attributable to sex and genetic lineage.
View Article and Find Full Text PDFPeripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones.
View Article and Find Full Text PDF