Publications by authors named "Ailian Li"

Background: Millions of people across the globe are affected by conditions like Amyotrophic Lateral Sclerosis (ALS), Parkinson's Disease (PD), Multiple Sclerosis (MS), Spinal Cord Injury (SCI), and Traumatic Brain Injury (TBI), although most occurrences are common in the elderly population. This systematic review aims to highlight the safety of the procedures, their tolerability, and efficacy of the available therapies conducted over the years using mesenchymal stem cells (MSCs) in treating the neurological conditions mentioned above.

Methods: PubMed was used to search for published data from clinical trials performed using mesenchymal stem cells.

View Article and Find Full Text PDF

To effectively control pollution and improve water quality, it is essential to accurately analyze the potential pollution sources in rivers. The study proposes a hypothesis that land use can influence the identification and apportionment of pollution sources and tested it in two areas with different types of water pollution and land use. The redundancy analysis (RDA) results showed that the response mechanisms of water quality to land use differed among regions.

View Article and Find Full Text PDF

Background: Flowering is a critical physiological change that interferes with not only biomass yield but also secondary metabolism, such as the biosynthesis of flavonoids, in rhizome/root plants. The continuous inflorescence removal (CIR) treatment is frequently conducted to weaken this effect. Fagopyrum dibotrys (D.

View Article and Find Full Text PDF

The levels of leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), a type I transmembrane glycoprotein broadly expressed on the majority of hematopoietic cells, such as T/B cells and natural killer cells, vary significantly during cell differentiation and activation. Previous studies focused mainly on the role of LAIR-1 in physiology and some pathological conditions, including autoimmune diseases. It has been shown that LAIR-1 mediates immune suppression, further resulting in uncontrolled inflammation.

View Article and Find Full Text PDF

In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic.

View Article and Find Full Text PDF

The rhizome of Fagopyrum dibotrys is a traditional Chinese medicine that has recently gained attention due to substantial findings regarding its bioactive proanthocyanidin (PA) compounds. However, the molecular mechanism underlying PA accumulation in F. dibotrys remains elusive.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head (ONFH) is a potentially devastating complication that occurs in up to 40% of young adults receiving chronic glucocorticoid (GC) therapy. Through a validated GC therapy rat model, we have previously shown that Wistar Kyoto (WK) rats exhibit a genetic susceptibility to GC-induced ONFH compared to Sasco Fischer (F344) rats. We have undertaken this study in order to investigate differences between these two strains for their bone parameters, alpha-2-macroglobulin (A2M) circulating levels and incidence of GC-induced osteonecrosis of the femoral head.

View Article and Find Full Text PDF

Increased risk of bone fractures is observed in patients with chronic inflammatory conditions, such as inflammatory bowel disease and rheumatoid arthritis. Members of the Interferon Response Factor family of transcriptional regulators, IRF1 and IRF8, have been identified as genetic risk factors for several chronic inflammatory and autoimmune diseases. We have investigated a potential role for the Irf1 gene in bone metabolism.

View Article and Find Full Text PDF

An overall decline in the availability of osteogenic precursor cells and growth factors in the bone marrow microenvironment have been associated with impaired bone formation and osteopenia in humans. The objective of the current study was to determine if transplantation of mesenchymal stromal cells (MSC) from a healthy, young donor mouse into an osteopenic recipient mouse could enhance osseointegration of a femoral implant. MSC harvested from normal young adult mice differentiated into bone forming osteoblasts when cultured on implant grade titanium surfaces ex vivo and promoted bone formation around titanium-coated rods implanted in the femoral canal of osteopenic recipient mice.

View Article and Find Full Text PDF

Objective: T cell protein tyrosine phosphatase (TC-PTP) is an important regulator of hematopoiesis and cytokine signaling. Recently, several genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) in the locus of TC-PTP that are associated with rheumatoid arthritis and juvenile idiopathic arthritis, among other autoimmune diseases. The aim of this study was to evaluate the effect of TC-PTP deficiency on the bone and joint environment using a knockout mouse model.

View Article and Find Full Text PDF

Optimal scaffold characteristics are essential for the therapeutic application of engineered tissues. Hydraulic permeability (k) affects many properties of collagen gels, such as mechanical properties, cell-scaffold interactions within three dimensions (3D), oxygen flow and nutrient diffusion. However, the cellular response to 3D gel scaffolds of defined k values has not been investigated.

View Article and Find Full Text PDF

Myeloid differentiating factor 88 (MyD88) and MyD88 adaptor-like (Mal) are adaptor molecules critically involved in the Toll-like receptor (TLR) 4 signaling pathway. While Mal has been proposed to serve as a membrane-sorting adaptor, MyD88 mediates signal transduction from activated TLR4 to downstream components. The Toll/Interleukin-1 receptor (TIR) domain of MyD88 is responsible for sorting and signaling via direct or indirect TIR-TIR interactions between Mal and TLR4.

View Article and Find Full Text PDF

Inbred albino Louvain (LOU) rats are considered a model of healthy aging due to their increased longevity in the absence of obesity and with a low incidence of common age-related diseases. In this study, we characterized the bone phenotype of male and female LOU rats at 4, 20 and 27 months of age using quantitative micro computed tomographic (mCT) imaging, histology and biochemical analysis of circulating bone biomarkers. Bone quality and morphometry of the distal femora, assessed by mCT, was similar in male and female rats at 4 months of age and deteriorated over time.

View Article and Find Full Text PDF
Article Synopsis
  • A loss of function mutation in the CFTR gene is linked to bone disease risk in cystic fibrosis patients.
  • The study used congenic mice to compare bone health in Cftr(-/-) mice and control mice at various ages.
  • Findings revealed significant bone deficits in Cftr(-/-) mice at both 12 and 28 weeks, indicating that CFTR mutations directly affect bone metabolism regardless of other health factors.
View Article and Find Full Text PDF

Background: Human interferon-gamma (hIFN-gamma) is produced by lymphocytes and has a variety of biological properties. Measurement of hIFN-gamma is widely used for various immunological responses for allergic or autoimmune diseases. Enzyme-linked immunosorbent assay (ELISA) is an established immunoassay used to quantify cellular metabolites or cytokines.

View Article and Find Full Text PDF
Article Synopsis
  • Sam68 is a KH-type RNA binding protein that, when deleted in mice, leads to increased bone mass and a differentiation advantage towards bone-forming cells (osteoblasts).
  • Sam68-null mice (Sam68-/-) show similar bone volume to much younger wild-type mice, indicating a protective effect against age-related bone loss.
  • Additionally, Sam68 appears to negatively regulate the differentiation of bone marrow cells into fat cells (adipocytes), as evidenced by fewer adipocytes in aged Sam68-/- mice compared to their wild-type counterparts.
View Article and Find Full Text PDF

Peroxisomal biogenesis disorders include Zellweger syndrome and milder phenotypes, such as neonatal adrenoleukodystrophy (NALD). Our previous study of a NALD patient with a marked deterioration by a fever revealed a mutation (Ile326Thr) within a SH3 domain of PEX13 protein (Pex13p), showing a temperature-sensitive (TS) phenotype in peroxisomal biogenesis. Clinical TS phenotypes also have been reported in several genetic diseases, but the molecular mechanisms still remain to be clarified.

View Article and Find Full Text PDF

Many recombinant proteins have been used as drugs; however, human proteins expressed using heterologous hosts are often insoluble. To obtain correctly folded active proteins, many optimizations of expression have been attempted but usually are found to be applicable only for specific targets. Interleukin-18 (IL-18) has a key role in many severe disorders including autoimmune diseases, and therapeutic approaches using IL-18 have been reported.

View Article and Find Full Text PDF

Human interleukin-18 (hIL-18), initially cloned as an IFN-gamma-inducing factor, has a key role in many inflammatory diseases. We have previously developed a high production system for correctly folded active hIL-18 protein, leading to the revelation of the 3D-structure and the receptor binding mode. These findings can strongly indicate the experimental and medical applications of IL-18; however, the recombinant protein is prone to be inactivated forming multimers.

View Article and Find Full Text PDF

Human interleukin-18 (hIL-18), originally known as an IFN-gamma-inducing factor, is a recently cloned cytokine that is secreted by Kupffer cells of the liver and by stimulated macrophages. We have previously established a method of expression and purification of IL-18. The yield however remains low and the insufficient expression of a heterologous protein could be due to skewed codon usage between the expression host and the cDNA donor.

View Article and Find Full Text PDF

Interleukin-18 (IL-18), a cytokine formerly known as interferon-gamma- (IFN-gamma-) inducing factor, has pleiotropic immunoregulatory functions, including augmentation of IFN-gamma production, Fas-mediated cytotoxicity and developmental regulation of T-lymphocyte helper type I. We determined the solution structure of IL-18 as a first step toward understanding its receptor activation mechanism. It folds into a beta-trefoil structure that resembles that of IL-1.

View Article and Find Full Text PDF