The coordination between leaf and root traits is crucial for plants to synchronize their strategies for acquiring and utilizing above- and belowground resources. Nevertheless, the generality of a whole plant conservation gradient is still controversial. Such testing has been conducted mainly among communities at large spatial scales, and thus evidence is lacking within communities.
View Article and Find Full Text PDFWe examined the metabolic response of microbial respiration to glucose addition with the topsoil (0-10 cm) from five plantation types, including , , , , and plantations, in the Sanming Forest Ecosystem National Field Observation and Research Station in Fujian Province. The results showed that glucose addition significantly increased microbial respiration by 82.4%-349.
View Article and Find Full Text PDFInput of root litter can alter soil organic carbon (SOC) dynamics via causing priming effect (PE) on native SOC decomposition and forming new SOC. However, it is unknown how functional type mediates the root litter-driven PE and new C formation as well as their response to warming, which are of pivotal for soil C budget. We mixed litter segments of absorptive roots and transport roots from a Chinese fir (Cunninghamia lanceolata) plantation into isotopically distinct soil and incubated at 19°C (local mean annual temperature) and 23°C (warming by 4°C) for 210 days.
View Article and Find Full Text PDFElevated atmospheric nitrogen (N) deposition potentially enhances the degree of phosphorus (P) limitation in tropical and subtropical forests. However, it remains elusive that how soil microorganisms deal with the N deposition-enhanced P limitation. We collected soils experienced 9 years of manipulative N input at various rates (0, 40, and 80 kg N ha y) in an old-growth subtropical natural forest.
View Article and Find Full Text PDFPlant Cell Environ
September 2023
How root respiration acclimates to global warming remains unclear, especially in subtropical forests that play a key role in the global carbon budget. In a large-scale in situ soil warming experiment, the occurrence of, and mechanisms controlling over, the acclimation of fine-root respiration of Cunninghamia lanceolata during the fourth year of warming were investigated. Specific respiration rates (at reference temperature of 20°C; SRR ) were measured with exogenous glucose addition, uncoupler addition, or no addition, and root morphological and chemical traits were also measured.
View Article and Find Full Text PDFThere is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C) × N addition (ambient, +40 kg N ha-1 yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100 μmol (V100,20 °C-NO3-) in spring.
View Article and Find Full Text PDFThe variation in fine root respiration with root age provides insight into root adaptation to climate warming, but the mechanism is poorly understood. In this study, we investigated the respiratory response of fine roots (<1 mm and 1-2 mm) of different ages (2-, 4- and 6-month old) of Chinese fir (Cunninghamia lanceolata (Lamb.)) seedlings to soil warming (4 °C above the control using cable heating).
View Article and Find Full Text PDFWe measured the morphology traits (specific root length, specific root surface area, root tissue density, average root diameter) and architecture traits (root fork, root fork ratio, increase rate of root length, root tip density, root fork density) of fine roots in two mycorrhiza tree species, (ectomycorrhizal) and (arbuscular mycorrhizal), in an evergreen broadleaved forest in the middle subtropical zone. Root bags method was used in an nitrogen deposition experiment. The aim of this study was to reveal the differences in the plastic responses of fine root morphology and architecture traits to nitrogen deposition between the different mycorrhizal trees.
View Article and Find Full Text PDFNitrogen deposition will affect the morphology of fine roots and its absorption of nutrien-ts, resulting in changes nutrient cycling in terrestrial ecosystems. In order to understand the effects of nitrogen deposition on fine root morphological traits of Castanopsis fabri and C. carlesii, two ectomycorrhizas tree species, we carried out in situ experiment using the root bags method in an evergreen broadleaved forest in the subtropical zone.
View Article and Find Full Text PDF