Publications by authors named "Aila Karioja-Kallio"

The purpose of this work was to carry out preclinical toxicity and bio-distribution studies required for regulatory approval of a clinical trial application for Phase I clinical studies of ONCOS-102 (Ad5/3-D24-GM-CSF) for therapy of advanced cancers (NCT01598129). The study design, route of administration and dosage differs from the clinical protocol and in more detail, investigate bio-distribution and toxicological profile of ONCOS-102 treatment in animal model. The study was carried out in 300 hamsters divided into nine test groups-three bio-distribution groups and six groups for analysis of toxicity.

View Article and Find Full Text PDF

The quality of the antitumor immune response is decisive when developing new immunotherapies for cancer. Oncolytic adenoviruses cause a potent immunogenic stimulus and arming them with costimulatory molecules reshapes the immune response further. We evaluated peripheral blood T-cell subsets of 50 patients with refractory solid tumors undergoing treatment with oncolytic adenovirus.

View Article and Find Full Text PDF

The immunosuppressive environment of advanced tumors is a primary obstacle to the efficacy of immunostimulatory and vaccine approaches. Here, we report an approach to arm an oncolytic virus with CD40 ligand (CD40L) to stimulate beneficial immunologic responses in patients. A double-targeted chimeric adenovirus controlled by the hTERT promoter and expressing CD40L (CGTG-401) was constructed and nine patients with progressing advanced solid tumors refractory to standard therapies were treated intratumorally.

View Article and Find Full Text PDF

Patients with advanced solid tumors refractory to and progressing after conventional therapies were treated with three different regimens of low-dose cyclophosphamide (CP) in combination with oncolytic adenovirus. CP was given with oral metronomic dosing (50 mg/day, N = 21), intravenously (single 1,000 mg dose, N = 7) or both (N = 7). Virus was injected intratumorally.

View Article and Find Full Text PDF

The safety of oncolytic viruses for treatment of cancer has been shown in clinical trials while antitumor efficacy has often remained modest. As expression of the coxsackie-adenovirus receptor may be variable in advanced tumors, we developed Ad5-D24-RGD, a p16/Rb pathway selective oncolytic adenovirus featuring RGD-4C modification of the fiber. This allows viral entry through alpha-v-beta integrins frequently highly expressed in advanced tumors.

View Article and Find Full Text PDF

Background: Successful tumor targeting of systemically administered oncolytic adenoviruses may be hindered by interactions with blood components.

Materials And Methods: Blood distribution of oncolytic adenoviruses featuring type 5 adenovirus fiber, 5/3 capsid chimerism, or RGD-4C in the fiber knob was investigated in vitro and in patients with refractory solid tumors.

Results: Virus titers and prevalence in serum of patients increased over the first post-treatment week, suggesting replication.

View Article and Find Full Text PDF

Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy.

View Article and Find Full Text PDF

Purpose: Twenty-one patients with cancer were treated with a single round of oncolytic adenovirus ICOVIR-7.

Experimental Design: ICOVIR-7 features an RGD-4C modification of the fiber HI-loop of serotype 5 adenovirus for enhanced entry into tumor cells. Tumor selectivity is mediated by an insulator, a modified E2F promoter, and a Rb-binding site deletion of E1A, whereas replication is optimized with E2F binding hairpins and a Kozak sequence.

View Article and Find Full Text PDF

Granulocyte macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific cytotoxic T-cells through antigen-presenting cells. Oncolytic tumor cell-killing can produce a potent costimulatory danger signal and release of tumor epitopes for antigen-presenting cell sampling. Therefore, an oncolytic adenovirus coding for GMCSF was engineered and shown to induce tumor-specific immunity in an immunocompetent syngeneic hamster model.

View Article and Find Full Text PDF