Worsening temperature extremes are among the most severe impacts of human-induced climate change. These extremes are often defined as rare events that exceed a specific percentile threshold within the distribution of daily maximum temperature. The percentile-based approach is chosen to follow regional and seasonal temperature variations so that extremes can occur globally and in all seasons, and frequently uses a running seasonal window to increase the sample size for the threshold calculation.
View Article and Find Full Text PDFA new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented.
View Article and Find Full Text PDFGeological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO was 10 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover.
View Article and Find Full Text PDFJ Adv Model Earth Syst
December 2016
This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Inter-comparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6.
View Article and Find Full Text PDFGeneral circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative-convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.
View Article and Find Full Text PDF