We have investigated the folding and assembly behavior of a cystine-based dimeric diamide bearing pyrene units and solubilizing alkyl chains. In low-polarity solvents, it forms a 14-membered ring through double intramolecular hydrogen bonds between two diamide units. The spectroscopic studies revealed that the folded state is thermodynamically unstable and eventually transforms into more energetically stable helical supramolecular polymers that show an enhanced chiral excitonic coupling between the transition dipoles of the pyrene units.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2022
For the creation of next-generation organic electronic materials, the integration of π-systems has recently become a central theme. Such functional materials can be assembled by supramolecular polymerization when aromatic π-systems are used as monomers, and the properties of the resulting supramolecular polymer strongly depend on the electronic structure of the monomers. Here, we demonstrate the construction of a supramolecular polymer consisting of an antiaromatic π-system as the monomer.
View Article and Find Full Text PDF