Publications by authors named "Aiko Narazaki"

Femtosecond laser direct write (fs-LDW) is a promising technology for three-dimensional (3D) printing due to its high resolution, flexibility, and versatility. A protein solution can be used as a precursor to fabricate 3D proteinaceous microstructures that retain the protein's native function. The large diversity of protein molecules with different native functions allows diverse applications of this technology.

View Article and Find Full Text PDF

Previously, we achieved one-pot fabrication of heparin-immobilized calcium phosphate (CaP) nanoparticles with high dispersibility by a precipitation process in a highly supersaturated reaction solution. In this study, we revealed that the heparin-immobilized CaP nanoparticles have a greater co-immobilizing capacity for basic proteins than for acidic proteins. In this process, heparin acted as not only a particle-dispersing agent but also as an immobilizing agent for basic proteins; it remarkably (approximately three-fold) improved the immobilization efficiency of cytochrome C (a model basic protein) within the CaP nanoparticles.

View Article and Find Full Text PDF

Background: Development of new clinical regenerative procedures is needed for the reconstruction of the connective tissue attachment lost to periodontal disease. Apatite coating on the affected root surfaces could improve root surface biocompatibility and promote the reestablishment of connective tissue attachment.

Highlight: We developed two novel techniques that use laser light for coating the tooth surface with apatite.

View Article and Find Full Text PDF

Noble metal nanodots have been applied to plasmonic devices, catalysts, and highly sensitive detection in bioinstruments. We have been studying the fabrications of them through a laser-induced dot transfer (LIDT) technique, a type of laser-induced forward transfer (LIFT), in which nanodots several hundred nm in diameter are produced via a solid-liquid-solid (SLS) mechanism. In the previous study, an interference laser processing technique was applied to LIDT, and aligned Au nanodots were successfully deposited onto an acceptor substrate in a single shot of femtosecond laser irradiation.

View Article and Find Full Text PDF

Shape- and size-controlled metallic nanoparticles are very important due to their wide applicability. Such particles have been fabricated by chemosynthesis, chemical-vapor deposition, and laser processing. Pulsed-laser deposition and laser-induced dot transfer use ejections of molten layers and solid-liquid-solid processes to fabricate nanoparticles with a radius of some tens to hundreds of nm.

View Article and Find Full Text PDF

A novel approach in the fabrication of microarrays of dye and protein on fused silica plates using the laser-induced backside wet etching (LIBWE) technique is described. The surface of fused silica plates was initially precoated using trimethoxysilane self-assembled monolayers (SAMs) and then etched using the LIBWE method to obtain the desired microstructures on the plate surface. Using this technique, the SAMs on the nonirradiated areas were able to survive the LIBWE process and were used as templates for the subsequent deposition of dye molecules or proteins via chemical bonding or physical adsorption.

View Article and Find Full Text PDF

We have studied the matrix photolysis of 2,4,6-triazido-1,3,5-triazine (cyanuric triazide, 1). Stepwise generation of the corresponding mononitrene, dinitrene, and trinitrene was observed by matrix IR and electron paramagnetic resonance (EPR) spectroscopy. The generated species were identified by comparison of their matrix IR spectra with density functional theory (DFT) computational results.

View Article and Find Full Text PDF

Using laser-induced backside wet etching (LIBWE) technique, microstructures were fabricated onto the surface of fused silica plates, which were pre-coated with self-assembled monolayers (SAMs). Dye molecules and proteins were alternately deposited onto the laser-irradiated or non-irradiated areas by either chemical bonding or physical adsorption.

View Article and Find Full Text PDF