Whole-blood samples were used for a counting immunoassay (CIA) with the aim of developing a short- turnaround test. After optimization of the CIA, hepatitis B surface antigen (HBsAg), anti-hepatitis C virus antibodies (anti-HCV), and anti-Treponema pallidum antibodies (anti-TP) were detected as efficiently as by an enzyme immunoassay (EIA) with serum samples. The correlations between whole-blood CIA and serum EIA were 99.
View Article and Find Full Text PDFAlthough changes in the soleus H-reflex (an electrical analog of the tendon jerk) with age have been examined in a number of studies, some controversy remains. Also, the effect of age on inhibitory reflexes has received little attention. The purpose of this paper was to examine some excitatory and inhibitory reflexes systematically in healthy human subjects having a wide range of ages.
View Article and Find Full Text PDFThe purpose of this paper was to study spinal inhibition during several different motor tasks in healthy human subjects. The short-latency, reciprocal inhibitory pathways from the common peroneal (CP) nerve to the soleus muscle and from the tibial nerve to the tibialis anterior muscle were studied as a depression of ongoing voluntary electromyograph (EMG) activity. First, the effect of stimulus intensity on the amount of inhibition was examined to decide an appropriate stimulation to study the task-dependent modulation of inhibition.
View Article and Find Full Text PDFMotor-evoked potentials (MEP) in the tibialis anterior (TA) muscle were shown to be facilitated by repetitive electrical stimulation of the common peroneal (CP) nerve at intensities above motor threshold. The TA electromyogram (EMG) and ankle flexion force were recorded in response to transcranial magnetic stimulation (TMS) of the leg area of the motor cortex to evaluate the excitability of cortico-spinal-muscular pathways. Repetitive stimulation of the CP nerve at 25 Hz for 30 min increased the MEP by 50.
View Article and Find Full Text PDFThis article reviews the use of therapeutic and functional electrical stimulation in subjects after a spinal cord injury (SCI). Muscles become much weaker and more fatigable, while bone density decreases dramatically after SCI. Therapeutic stimulation of paralyzed muscles for about 1 h/day can reverse the atrophic changes and markedly increase muscle strength and endurance as well as bone density.
View Article and Find Full Text PDF