Publications by authors named "Aiko Fujino"

Article Synopsis
  • The study examines the effect of type 2 diabetes on gingival capillaries in patients with periodontitis, focusing on their structure and density.
  • It involved 29 patients, with no significant differences found in periodontal health indicators between those with and without diabetes.
  • The findings revealed that while gingival capillary density was similar in both groups, patients with diabetes exhibited a higher rate of morphological abnormalities in their gingival capillaries.
View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2), a serine/threonine kinase from the p38 mitogen-activated protein kinase signalling pathway, plays an important role in the production of TNF-α and other cytokines. In a previous report, it was shown that MK2 in complex with the selective inhibitor TEI-I01800 adopts an α-helical glycine-rich loop that is induced by the stable nonplanar conformer of TEI-I01800. To understand the mechanism of the structural change, the structure of MK2 bound to TEI-L03090, which lacks the key substituent found in TEI-I01800, was determined.

View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the MK2-TEI-I01800 complex has been reported; its Gly-rich loop was found to form an α-helix, not a β-sheet as has been observed for other Ser/Thr kinases. TEI-I01800 is 177-fold selective against MK2 compared with CDK2; in order to understand the inhibitory mechanism of TEI-I01800, the cyclin-dependent kinase 2 (CDK2) complex structure with TEI-I01800 was determined at 2.

View Article and Find Full Text PDF

A novel class of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) inhibitors was discovered through screening a kinase-focused library. A homology model of MAPKAP-K2 was generated and used to guide the initial SAR studies and to rationalize the observed selectivity over CDK2. An X-ray crystal structure of a compound from the active series bound to crystalline MAPKAP-K2 confirmed the predicted binding mode.

View Article and Find Full Text PDF

Mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2 or MK2) is a Ser/Thr kinase from the p38 mitogen-activated protein kinase signalling pathway and plays an important role in inflammatory diseases. The crystal structure of the complex of human MK2 (residues 41-364) with the potent MK2 inhibitor TEI-I01800 (pK(i) = 6.9) was determined at 2.

View Article and Find Full Text PDF

SLPI (secretory leukocyte protease inhibitor) is a 107-residue non-glycosylated protease inhibitor, which inhibits a wide range of serine proteases, trypsin, chymotrypsin, neutrophil elastase, chymase and cathepsin G. X-ray crystallographic analyses have shown that SLPI comprises two separate domains of similar architecture [Grütter, Fendrich, Huber & Bode (1988), EMBO J. 7, 345-351] and the C-terminal domain interacts with bovine alpha-chymotrypsin.

View Article and Find Full Text PDF

1-Aminocyclopropane-l-carboxylate deaminase (ACCD) is a pyridoxal 5/-phosphate dependent enzyme that shows deaminase activity toward ACC, a precursor of plant hormone ethylene. ACCD from some soil bacteria has been reported to be able to break the cyclopropane ring of ACC to yield a-ketobutyrate and ammonia. We reported the crystal structure of ACCD from the yeast Hansenula saturnus in the absence/presence of substrate ACC, and proposed its ingenious reaction mechanisms.

View Article and Find Full Text PDF

The pyridoxal 5'-phosphate-dependent enzymes have been evolved to catalyze diverse substrates and to cause the reaction to vary. 1-Aminocyclopropane-1-carboxylate deaminase catalyzes the cyclopropane ring-opening reaction followed by deamination specifically. Since it was discovered in 1978, the enzyme has been widely investigated from the mechanistic and physiological viewpoints because the substrate is a precursor of the plant hormone ethylene and the enzymatic reaction includes a cyclopropane ring-opening.

View Article and Find Full Text PDF