J Am Soc Mass Spectrom
December 2022
Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics.
View Article and Find Full Text PDFIntroduction: Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond.
View Article and Find Full Text PDFEdible vegetable oils comprise integral components of humans' daily diet during the lifetime. Therefore, they constitute a central part of dietary-exposome, which among other factors regulates human health. In particular, the regular consumption of olive oil (OO) has been largely accepted as a healthy dietary pattern.
View Article and Find Full Text PDFMetabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples.
View Article and Find Full Text PDFA comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers.
View Article and Find Full Text PDFThe utility of metabolomics is well documented; however, its full scientific promise has not yet been realized due to multiple technical challenges. These grand challenges include accurate chemical identification of all observable metabolites and the limiting depth-of-coverage of current metabolomics methods. Here, we report a combinatorial solution to aid in both grand challenges using UHPLC-trapped ion mobility spectrometry coupled to tandem mass spectrometry (UHPLC-TIMS-TOF-MS).
View Article and Find Full Text PDFThe mutant ( of was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage.
View Article and Find Full Text PDFOffspring of type 2 diabetes (T2D) patients have increased risk to develop diabetes, due to inherited genetic susceptibility that directly interferes with the individual adaption to environmental conditions. We characterise T2D offspring (OSP) to identify metabolic risk markers for early disease prediction. Plasma of metabolically healthy OSP individuals (n = 43) was investigated after an oral lipid tolerance test (oLTT) by an untargeted mass spectrometric approach for holistic metabolome analyses.
View Article and Find Full Text PDFExploring the diversity of plant secondary metabolism requires efficient methods to obtain sufficient structural insights to discriminate previously known from unknown metabolites. De novo structure elucidation and confirmation of known metabolites (dereplication) remain a major bottleneck for mass spectrometry-based metabolomic workflows, and few systematic dereplication strategies have been developed for the analysis of entire compound classes across plant families, partly due to the complexity of plant metabolic profiles that complicates cross-species comparisons. 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) are abundant defensive secondary metabolites whose malonyl and glycosyl decorations are induced by jasmonate signaling in the ecological model plant Nicotiana attenuata.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2013
We report a method of ion-pairing liquid chromatography coupled to mass spectrometry (IP-LC-MS) that we have developed for the sensitive detection and quantification of a variety of biologically relevant polar molecules. We use the ion-pairing agent diamyl ammonium to improve chromatographic resolution of polar compounds, such as nucleotide cofactors, sugar phosphates, and organic acids, that are generally poorly retained by conventional reverse phase chromatographic methods. This method showed good linearity (average R value of 0.
View Article and Find Full Text PDFThe application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation.
View Article and Find Full Text PDFIn this work, wheat from two farming systems, organic and conventional, was analyzed. Organic agriculture is one of the fastest growing sectors in the food industry of Europe and the United States. It is an open question, whether organic or conventional agricultural management influences variables such as metabolism, nutrient supply, seed loading and metabolite composition of wheat.
View Article and Find Full Text PDFBackground: Evolutionary changes that are due to different environmental conditions can be examined based on the various molecular aspects that constitute a cell, namely transcript, protein, or metabolite abundance. We analyzed changes in transcript and metabolite abundance in evolved and ancestor strains in three different evolutionary conditions - excess nutrient adaptation, prolonged stationary phase adaptation, and adaptation because of environmental shift - in two different strains of bacterium Escherichia coli K-12 (MG1655 and DH10B).
Results: Metabolite profiling of 84 identified metabolites revealed that most of the metabolites involved in the tricarboxylic acid cycle and nucleotide metabolism were altered in both of the excess nutrient evolved lines.
We analyzed the role of the sucrose (Suc) synthase MtSucS1 during nodulation of the model legume Medicago truncatula, integrating data for the developmental, transcriptional, and metabolic processes affected downstream of an impaired Suc cleavage in root nodules. To reduce carbohydrate supply to nodule tissues, transgenic plants expressing a p35S-driven MtSucS1-antisense fusion were constructed. These plants displayed an up to 90% reduction of MtSucS1 proteins in roots and nodules.
View Article and Find Full Text PDFThe 2-methylcitrate cycle as the primary way to metabolize propionate was investigated using metabolic profiling. For this purpose, a fast harvesting procedure was applied in which cells growing in liquid minimal medium were harvested by a short centrifugation and freeze-dried. Subsequently, gas chromatography-mass spectrometry of polar extracts derivatized by MSTFA was employed for metabolite characterization.
View Article and Find Full Text PDFThe genes MYB11, MYB12 and MYB111 share significant structural similarity and form subgroup 7 of the Arabidopsis thaliana R2R3-MYB gene family. To determine the regulatory potential of these three transcription factors, we used a combination of genetic, functional genomics and metabolite analysis approaches. MYB11, MYB12 and MYB111 show a high degree of functional similarity and display very similar target gene specificity for several genes of flavonoid biosynthesis, including CHALCONE SYNTHASE, CHALCONE ISOMERASE, FLAVANONE 3-HYDROXYLASE and FLAVONOL SYNTHASE1.
View Article and Find Full Text PDFThe hybrid sensory histidine kinase Slr1759 of the cyanobacterium Synechocystis sp. strain PCC 6803 contains multiple sensory domains and a multi-step phosphorelay system. Immuno blot analysis provided evidence that the histidine kinase Slr1759 is associated with the cytoplasmic membrane.
View Article and Find Full Text PDFIn some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions.
View Article and Find Full Text PDFAn effective symbiosis between Sinorhizobium meliloti and its host plant Medicago sativa is dependent on a balanced physiological interaction enabling the microsymbiont to fix atmospheric nitrogen. Maintenance of the symbiotic interaction is regulated by still poorly understood control mechanisms. A first step toward a better understanding of nodule metabolism was the determination of characteristic metabolites for alfalfa root nodules.
View Article and Find Full Text PDFIn symbiotic interaction with legume plants, bacteria termed Rhizobia can fix massive amounts of atmospheric nitrogen which is primarily provided in the form of ammonium to the host plants. Therefore, legume root nodules that house the symbiotic bacteria are ideally suited to study the process of primary ammonium assimilation. Here, we present a GC-MS based metabolite profiling analysis of Medicago truncatula root nodules (induced by the bacterium Sinorhizobium meliloti) before and after inhibition of glutamine synthetase (GS) by the chemical herbicide phosphinotricine.
View Article and Find Full Text PDFThe genome of Corynebacterium glutamicum ATCC 13032 contains two genes, rpf1 and rpf2, encoding proteins with similarities to the essential resuscitation-promoting factor (Rpf) of Micrococcus luteus. Both the Rpf1 (20.4 kDa) and Rpf2 (40.
View Article and Find Full Text PDF