Extra virgin olive oil (EVOO) should be naturally free of polycyclic aromatic hydrocarbon (PAH) contamination. PAHs are carcinogenic and toxic, and may cause human health and safety problems. This work aims to detect benzo[a]pyrene residues in EVOO using an easily adaptive optical methodology.
View Article and Find Full Text PDFExtra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO has been thoroughly studied over the last several years, aiming at its authentication, but also to reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative study was conducted to assess Greek EVOOs' quality and authentication utilizing different analytical approaches, both targeted and untargeted.
View Article and Find Full Text PDFBackground: The botanical origin of honey attracts both commercial and research interest. Consumers' preferences and medicinal uses of particular honey types drive the demand for the determination of their authenticity with regard to their botanical origin. This study presents the discrimination of thyme, multi-floral.
View Article and Find Full Text PDFThe present study was aimed at the identification, differentiation and characterization of red and white Cretan wines, which are described with Protected Geographical Indication (PGI), using ultraviolet-visible absorption spectroscopy. Specifically, the grape variety, the wine aging process and the role of barrel/container type were investigated. The combination of spectroscopic results with machine learning-based modelling demonstrated the use of absorption spectroscopy as a facile and low-cost technique in wine analysis.
View Article and Find Full Text PDFOlive oil samples from three different Greek regions (Crete, Peloponnese and Lesvos) were examined by optical spectroscopy in a wide spectral region from ultraviolet to near infrared using absorption, fluorescence and Raman spectroscopies. With the aid of machine learning methods, such as multivariate partial least squares discriminant analysis, a clear classification of samples originating from the different Greek geographical regions was revealed. Moreover, samples produced in different subareas of Crete and Peloponnese were also well discriminated.
View Article and Find Full Text PDFA multiphoton microscope employing second-harmonic generation (SHG) and two-photon excited fluorescence (TPF) is used for high-resolution ex vivo imaging of rabbit cornea in a backscattering geometry. Endogenous TPF and SHG signals from corneal cells and extracellular matrix, respectively, are clearly visible without exogenous dyes. Spectral characterization of these upconverted signals provides confirmation of the structural origin of both TPF and SHG, and spectral imaging facilitates the separation of keratocyte and epithelial cells from the collagen-rich corneal stroma.
View Article and Find Full Text PDFSterol regulatory element-binding proteins (SREBPs) are a subfamily of basic helix-loop-helix-leucine zipper proteins that regulate lipid metabolism. We show novel evidence of the in vivo occurrence and subnuclear spatial localization of both exogenously expressed SREBP-1a and -2 homodimers and heterodimers obtained by two-photon imaging and spectroscopy fluorescence resonance energy transfer. SREBP-1a homodimers localize diffusely in the nucleus, whereas SREBP-2 homodimers and the SREBP-1a/SREBP-2 heterodimer localize predominantly to nuclear speckles or foci, with some cells showing a diffuse pattern.
View Article and Find Full Text PDFObjective: To assess the ability of nonlinear optical microscopy (NLOM) to image ex vivo healthy and degenerative bovine articular cartilage.
Method: Fresh bovine femoral-tibial joints were obtained from an abattoir. Articular cartilage specimens were harvested from the tibial plateau.
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing (distension) of excised porcine coronary arteries with simultaneous two-photon excited fluorescence and second-harmonic generation microscopy. Our results show that second-harmonic generation signals derived from collagen can be spectrally isolated from elastin and smooth muscle cell two-photon fluorescence.
View Article and Find Full Text PDFWe have employed a spectroscopic approach for monitoring fluorescence resonance energy transfer (FRET) in living cells. This method provides excellent spectral separation of green fluorescent protein (GFP) mutant signals within a subcellular imaging volume using two-photon excited fluorescence imaging and spectroscopy (TPIS-FRET). In contrast to current FRET-based methodologies, TPIS-FRET does not rely on the selection of optical filters, ratiometric image analysis, or bleedthrough correction algorithms.
View Article and Find Full Text PDFMultiphoton microscopy relies on nonlinear light-matter interactions to provide contrast and optical sectioning capability for high-resolution imaging. Most multiphoton microscopy studies in biological systems have relied on two-photon excited fluorescence (TPEF) to produce images. With increasing applications of multiphoton microscopy to thick-tissue "intravital" imaging, second-harmonic generation (SHG) from structural proteins has emerged as a potentially important new contrast mechanism.
View Article and Find Full Text PDF