Background: The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis.
Methods: Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells).
Mutations in IDH1/2 and the epigenetic silencing of TET2 occur in leukaemia or glioma in a mutually exclusive manner. Although intrahepatic cholangiocarcinoma (iCCA) may harbour IDH1/2 mutations, the contribution of TET2 to carcinogenesis remains unknown. In the present study, the expression and promoter methylation of TET2 were investigated in iCCA.
View Article and Find Full Text PDFThis narrative review will discuss the current evidence supporting the possible application of precision or personalized medicine to the management of nonalcoholic or "metabolic" fatty liver disease (NAFLD), based on recent progress in the understanding of the genetics and epigenetics of the disease. The prevalence of NAFLD, which can progress to cirrhosis and hepatocellular carcinoma, is constantly increasing worldwide. Accurate noninvasive predictors of liver disease progression, as well as of cardiovascular complications of NAFLD, are urgently needed.
View Article and Find Full Text PDFThe Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications have known or predicted cancer driver roles. These genes were collected from 275 publications, including two sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905 cancer donors and multiple primary sites. This represents a more than 1.
View Article and Find Full Text PDF