Publications by authors named "Aikaterini Kaloudi"

Diagnostic imaging and radionuclide therapy of prostate (PC) and breast cancer (BC) using radiolabeled gastrin-releasing peptide receptor (GRPR)-antagonists represents a promising approach. We herein propose the GRPR-antagonist based radiotracer [Tc]Tc-DB15 ([Tc]Tc-N-AMA-DGA-Phe,Sar,LeuNHEt]BBN(6-13); N: 6-carboxy-1,4,8,11-tetraazaundecane, AMA: aminomethyl-aniline, DGA: diglycolic acid) as a new diagnostic tool for GRPR-positive tumors applying SPECT/CT. The uptake of [Tc]Tc-DB15 was tested in vitro in mammary (T-47D) and prostate cancer (PC-3) cells and in vivo in T-47D or PC-3 xenograft-bearing mice as well as in BC patients.

View Article and Find Full Text PDF

Background: Peptide radioligands may serve as radionuclide carriers to tumor sites overexpressing their cognate receptor for diagnostic or therapeutic purposes. Treatment of mice with the neprilysin (NEP)-inhibitor phosphoramidon was previously shown to improve the metabolic stability and tumor uptake of biodegradable radiopeptides. Aiming to clinical translation of this methodology, we herein investigated the impact of the approved pill Entresto, releasing the potent NEP-inhibitor LBQ657 in vivo, on the stability and tumor uptake of two radiopeptides.

View Article and Find Full Text PDF

: The frequent overexpression of gastrin-releasing peptide receptors (GRPRs) in human cancers provides the rationale for delivering clinically useful radionuclides to tumor sites using peptide carriers. Radiolabeled GRPR antagonists, besides being safer for human use, have often shown higher tumor uptake and faster background clearance than agonists. We herein compared the biological profiles of the GRPR-antagonist-based radiotracers [Tc]Tc-[N-PEGx-DPhe,Leu-NHEt]BBN(6-13) (N: 6-(carboxy)-1,4,8,11-tetraazaundecane; PEG: polyethyleneglycol): (i) [Tc]Tc-DB7 (x = 2), (ii) [Tc]Tc-DB13 (x = 3), and (iii) [Tc]Tc-DB14 (x = 4), in GRPR-positive cells and animal models.

View Article and Find Full Text PDF

Radiolabeled gastrin analogues have been proposed for theranostics of cholecystokinin subtype 2 receptor (CCKR)-positive cancer. Peptide radioligands based on other receptor antagonists have displayed superior pharmacokinetics and higher biosafety than agonists. Here, we present DGA1, a derivative of the nonpeptidic CCKR antagonist Z-360 carrying an acyclic tetraamine, for [Tc]Tc labeling.

View Article and Find Full Text PDF

Neurotensin subtype 1 receptors (NTS1R) represent attractive molecular targets for directing radiolabeled neurotensin (NT) analogs to tumor lesions for diagnostic and therapeutic purposes. This approach has been largely undermined by the rapid in vivo degradation of linear NT-based radioligands. Herein, we aim to increase the tumor targeting of three Tc-labeled NT analogs by the in-situ inhibition of two key proteases involved in their catabolism.

View Article and Find Full Text PDF

Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, representing attractive targets for diagnosis and therapy with bombesin (BBN)-like radioligands. GRPR-antagonists have lately attracted much attention owing to inherent biosafety and favorable pharmacokinetics. We herein present the GRPR-antagonist SB9 structurally resembling the known BBN-based agonist AMBA (SB9 = [Leu NHEt-desMet ]AMBA).

View Article and Find Full Text PDF

The overexpression of gastrin-releasing peptide receptors (GRPRs) in frequently occurring human tumors has provided the opportunity to use bombesin (BBN) analogs as radionuclide carriers to cancer sites for diagnostic and therapeutic purposes. We have been alternatively exploring human GRP motifs of higher GRPR selectivity compared to frog BBN sequences aiming to improve pharmacokinetic profiles. In the present study, we compared two differently truncated human endogenous GRP motifs: GRP(14⁻27) and GRP(18⁻27).

View Article and Find Full Text PDF

: The GRPR-antagonist Ga-SB3 visualized prostate cancer lesions in animal models and in patients. Switching radiometal from Ga to In impaired tumor targeting in mice, but coinjection of the neprilysin (NEP)-inhibitor phosphoramidon (PA) stabilized In-SB3 in circulation and remarkably increased tumor uptake. We herein report on the biological profile of In-SB4: In-[dAla]SB3.

View Article and Find Full Text PDF

Recent advances in oncology involve the use of diagnostic/therapeutic radionuclide-carrier pairs that target cancer cells, offering exciting opportunities for personalized patient treatment. Theranostic gastrin-releasing peptide receptor (GRPR)-directed radiopeptides have been proposed for the management of GRPR-expressing prostate and breast cancers. We have recently introduced the PET tracer Ga-SB3 (SB3, DOTA- p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), a receptor-radioantagonist that enables the visualization of GRPR-positive lesions in humans.

View Article and Find Full Text PDF

The GRPR-antagonist-based radioligands [Ga/In/Lu]NeoBOMB1 have shown excellent theragnostic profiles in preclinical prostate cancer models, while [Ga]NeoBOMB1 effectively visualized prostate cancer lesions in patients. We were further interested to explore the theragnostic potential of NeoBOMB1 in GRPR-positive mammary carcinoma, by first studying [Ga]NeoBOMB1 in breast cancer models; Methods: We investigated the profile of [Ga]NeoBOMB1, a [Ga]NeoBOMB1 surrogate, in GRPR-expressing T-47D cells and animal models; : NeoBOMB1 (ICs of 2.2 ± 0.

View Article and Find Full Text PDF

Molecular imaging of tumors with the PET radionuclide Ga has gained momentum in clinical oncology due to the expanding availability of commercial Ge/Ga-generators in combination with state-of-the-art PET/CT and PET/MRI hybrid imaging systems. Concurrently, interesting peptide-based or small-size vectors have been developed for theranostic use in cancer patients. Owing to the short half-life of Ga (t = 67.

View Article and Find Full Text PDF

Introduction: Radiolabeled bombesin (BBN)-analogs have been proposed for diagnosis and therapy of gastrin-releasing peptide receptor (GRPR)-expressing tumors, such as prostate, breast and lung cancer. Metabolic stability represents a crucial factor for the success of this approach by ensuring sufficient delivery of circulating radioligand to tumor sites. The amide-to-triazole switch on the backbone of DOTA-PEG-[Nle]BBN(7-14) (1) was reported to improve the in vitro stability of resulting Lu-radioligands.

View Article and Find Full Text PDF

Unlabelled: We recently introduced the potent gastrin-releasing peptide receptor (GRPR) antagonist Ga-SB3 (Ga-DOTA-p-aminomethylaniline-diglycolic acid-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt), showing excellent tumor localizing efficacy in animal models and in patients. By replacement of the C-terminal Leu-Met-NH dipeptide of SB3 by Sta-Leu-NH, the novel GRPR antagonist NeoBOMB1 was generated and labeled with different radiometals for theranostic use. We herein report on the biologic profile of resulting Ga-, In-, and Lu-NeoBOMB1 radioligands in GRPR-expressing cells and mouse models.

View Article and Find Full Text PDF

Introduction: In situ inhibition of neutral endopeptidase (NEP) has been recently shown to impressively increase the bioavailability and tumor uptake of biodegradable gastrin radioligands. Furthermore, angiotensin converting enzyme (ACE) has been previously shown to cleave gastrin analogs in vitro. In the present study, we have assessed the effects induced by single or dual NEP/ACE-inhibition on the pharmacokinetic profile of three (99m)Tc-labeled gastrins of varying peptide chain length: [(99m)Tc]SG6 ([(99m)Tc-N4-Gln(1)]gastrin(1-17)), [(99m)Tc]DG2 ([(99m)Tc-N4-Gly(4),DGlu(5)]gastrin(4-17)) and [(99m)Tc]DG4 ([(99m)Tc-N4-DGlu(10)]gastrin(10-17)).

View Article and Find Full Text PDF

Introduction: From a series of radiolabelled cholecystokinin (CCK) and gastrin analogues, (111)In-CP04 ((111)In-DOTA-(DGlu)6-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2) was selected for further translation as a diagnostic radiopharmaceutical towards a first-in-man study in patients with medullary thyroid carcinoma (MTC). A freeze-dried kit formulation for multicentre application has been developed. We herein report on biosafety, in vivo stability, biodistribution and dosimetry aspects of (111)In-CP04 in animal models, essential for the regulatory approval of the clinical trial.

View Article and Find Full Text PDF

Background: We have recently shown that treatment of mice with the neutral endopeptidase (NEP) inhibitor phosphoramidon (PA) improves the bioavailability and tumor uptake of biodegradable radiopeptides. For the truncated gastrin radiotracer [(111)In-DOTA]MG11 ([(DOTA)DGlu(10)]gastrin(10-17)), this method led to impressively high tumor-to-kidney ratios. Translation of this concept in the clinic requires the use of certified NEP inhibitors, such as thiorphan (TO) and its orally administered prodrug racecadotril (Race).

View Article and Find Full Text PDF

Minigastrin radiotracers, such as [(111)In-DOTA]MG0 ([(111)In-DOTA-DGlu(1)]minigastrin), have been considered for diagnostic imaging and radionuclide therapy of CCK2R-positive human tumors, such as medullary thyroid carcinoma. However, the high kidney retention assigned to the pentaGlu(2-6) repeat in the peptide sequence has compromised their clinical applicability. On the other hand, truncated des(Glu)(2-6)-analogs, such as [(111)In-DOTA]MG11 ([(111)In-DOTA-DGlu(10),desGlu(2-6)]minigastrin), despite their low renal uptake, show poor bioavailability and tumor targeting.

View Article and Find Full Text PDF

Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways.

View Article and Find Full Text PDF

Introduction: Radiolabeled gastrin analogs represent attractive candidates for diagnosis and therapy of cholecystokinin subtype-2 receptor (CCK2R)-expressing tumors. Radiolabeled des(Glu)5-gastrins show favorably low renal accumulation, but localize poorly in CCK2R-positive lesions. We introduce herein three truncated [DOTA-DGlu(10)]gastrin(10-17) analogs, with oxidation-susceptible Met(15) replaced by: (1), (2), or (3), and study the profile of [(111)In]1/2/3 during in vivo inhibition of neutral endopeptidase (NEP) in comparison to the non-truncated [ ([(111)In]4) reference.

View Article and Find Full Text PDF

Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range).

View Article and Find Full Text PDF