Publications by authors named "Aikaterini I. Argyriou"

The La protein (lupus antigen) is a ubiquitous RNA-binding protein found in all human cells. It is mainly localized in the nucleus, associates with all RNA polymerase III (Pol III) transcripts, as the first factor they interact with, and modulates subsequent processing events. Export of La to the cytoplasm has been reported to stimulate the decoding of specific cellular and viral mRNAs through IRES-dependent (Internal ribosome entry site) binding and translation.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC) is considered as the primary NO receptor across several known eukaryotes. The main interest regarding the biological role and its function, focuses on the H-NOX domain of the β1 subunit. This domain in its active form bears a ferrous b type heme as prosthetic group, which facilitates the binding of NO and other diatomic gases.

View Article and Find Full Text PDF

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The 1 subunit of the most abundant, 11 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension.

View Article and Find Full Text PDF

The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a β1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation.

View Article and Find Full Text PDF

La is an abundant phosphoprotein that protects polymerase III transcripts from 3'-5' exonucleolytic degradation and facilitates their folding. Consisting of the evolutionary conserved La motif (LAM) and two consecutive RNA Recognition Motifs (RRMs), La was also found to bind additional RNA transcripts or RNA domains like internal ribosome entry site (IRES), through sequence-independent binding modes which are poorly understood. Although it has been reported overexpressed in certain cancer types and depletion of its expression sensitizes cancer cells to certain chemotherapeutic agents, its role in cancer remains essentially uncharacterized.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC) enzyme is activated by the gaseous signaling agent nitric oxide (NO) and triggers the conversion of GTP (guanosine 5'-triphosphate) to cGMP (cyclic guanylyl monophosphate). It contains the heme binding H-NOX (heme-nitric oxide/oxygen binding) domain which serves as the sensor of NO and it is highly conserved across eukaryotes and bacteria as well. Many research studies focus on the synthesis of chemical compounds bearing possible therapeutic action, which mimic the heme moiety and activate the sGC enzyme.

View Article and Find Full Text PDF

The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered.

View Article and Find Full Text PDF

The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate).

View Article and Find Full Text PDF

The N-terminal half of La protein consists of two concatenated motifs: La motif (LAM) and the N-terminal RNA recognition motif (RRM1) both of which are responsible for poly(U) RNA binding. Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 191-residue LAM-RRM1 region of the La protein from the lower eukaryote Dictyostelium discoideum and its secondary structure prediction.

View Article and Find Full Text PDF

The La protein (Lupus antigen), a key mediator during biogenesis of RNA polymerase III transcripts, contains a characteristic La motif and one or two RNA recognition motif (RRM) domains, depending on the organism of origin. The RRM1 domain is conserved in higher eukaryotes and located in the N-terminal region, whereas the C-terminal RRM2 domain is absent in most lower eukaryotes and its specific role remains, so far, uncharacterized. Here, we present the backbone and side-chain assignment of the (1)H, (13)C and (15)N resonances of RRM2 of La protein from Dictyostelium discoideum.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGICs) of the Cys loop family are transmembrane glycoproteins implicated in a variety of biological functions. Here, we present a solution NMR study of the extracellular domain of a prokaryotic pLGIC homologue from the bacterium Gloeobacter violaceus that is found to be a monomer in solution.

View Article and Find Full Text PDF