Publications by authors named "Aikaterini Hatzioannou"

Introduction: Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA CAFs can form immunological synapses with Foxp3 regulatory T cells (Tregs) in tumours.

View Article and Find Full Text PDF

cell wall component β-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed . We show that a high-complexity blend of two individual β-glucans from possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules.

View Article and Find Full Text PDF

The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are myeloid precursors that exert potent immunosuppressive properties in cancer. Despite the extensive knowledge on mechanisms implicated in mobilization, recruitment, and function of MDSCs, their therapeutic targeting remains an unmet need in cancer immunotherapy, suggesting that unappreciated mechanisms of MDSC-mediated suppression exist. Herein, we demonstrate an important role of NLRP3 inflammasome in the functional properties of MDSCs in tumor-bearing hosts.

View Article and Find Full Text PDF

Objectives: Patients with lupus nephritis (LN) are in urgent need for early diagnosis and therapeutic interventions targeting aberrant molecular pathways enriched in affected kidneys.

Methods: We used mRNA-sequencing in effector (spleen) and target (kidneys, brain) tissues from lupus and control mice at sequential time points, and in the blood from 367 individuals (261 systemic lupus erythematosus (SLE) patients and 106 healthy individuals). Comparative cross-tissue and cross-species analyses were performed.

View Article and Find Full Text PDF

Regulatory T (Treg) cells, possess a strategic role in the maintenance of immune homeostasis, and their function has been closely linked to development of diverse pathologies including autoimmunity and cancer. Comprehensive studies in various disease contexts revealed an increased plasticity as a characteristic of Treg cells. Although Treg cell plasticity comes in various flavors, the major categories enclose the loss of Foxp3 expression, which is the master regulator of Treg cell lineage, giving rise to "ex-Treg" cells and the "fragile" Treg cells in which expression is retained but accompanied by the engagement of an inflammatory program and attenuation of the suppressive activity.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICI), which target immune regulatory pathways to unleash antitumor responses, have revolutionized cancer immunotherapy. Despite the remarkable success of ICI immunotherapy, a significant proportion of patients whose tumors respond to these treatments develop immune-related adverse events (irAE) resembling autoimmune diseases. Although the clinical spectrum of irAEs is well characterized, their successful management remains empiric.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSC) are potent suppressor cells that accumulate in tumor microenvironment and inhibit anti-tumor responses. Assessment of cell-autonomous MDSC responses allows the precise characterization of MDSCs in various disease settings and elucidates the underlying mechanisms of MDSC-mediated immune suppression. Here we describe a protocol for the isolation of tumor infiltrating or splenic MDSC, as well as their subpopulations, from melanoma-inoculated mice using Fluorescent Activated Cell Sorting (FACS).

View Article and Find Full Text PDF

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with β-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth.

View Article and Find Full Text PDF

Regulatory T (T) cells accumulate into tumors, hindering the success of cancer immunotherapy. Yet, therapeutic targeting of T cells shows limited efficacy or leads to autoimmunity. The molecular mechanisms that guide T cell stability in tumors remain elusive.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress antitumor immune responses, promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of antitumor immunity.

View Article and Find Full Text PDF

The beneficial effects of checkpoint blockade in tumor immunotherapy are limited to patients with increased tumor-infiltrating lymphocytes (TILs). Delineation of the regulatory networks that orchestrate the presence of TILs holds great promise for the design of effective immunotherapies. Podoplanin/gp38 (PDPN)-expressing lymph node stromal cells (LNSCs) are present in tumor stroma; however, their effect in the regulation of TILs remains elusive.

View Article and Find Full Text PDF

We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties.

View Article and Find Full Text PDF

Foxp3(+) regulatory T cell (Treg)-based immunotherapy holds promise for autoimmune diseases. However, this effort has been hampered by major caveats, including the low frequency of autoantigen-specific Foxp3(+) Tregs and lack of understanding of their molecular and cellular targets, in an unmanipulated wild-type (WT) immune repertoire. In this study, we demonstrate that infusion of myelin in WT mice results in the de novo induction of myelin-specific Foxp3(+) Tregs in WT mice and amelioration of experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Experimental autoimmune thyroiditis (EAT) is commonly induced by thyroglobulin (Tg) or Tg peptides in mice genetically susceptible to thyroiditis. In the present study, we investigated the immunogenic and pathogenic potential of a novel 20mer human Tg peptide, p2208 (amino acids 2208-2227), in mouse strains classified as low (LR) or high (HR) responders in EAT. The peptide was selected for its content in overlapping binding motifs for MHC class II products, associated with either resistance (A(b)), or susceptibility (A(s), E(k)) to EAT.

View Article and Find Full Text PDF

We have previously reported that the 20-mer peptide p2340 (amino acids 2340-2359), of human thyroglobulin (Tg) has the unique feature that it causes experimental autoimmune thyroiditis (EAT) in mouse strains bearing high-responder (HR) or low-responder (LR) MHC haplotypes in Tg-induced EAT. In this study, we have employed fine epitope mapping to examine whether this property of p2340 is the result of recognition of distinct or shared minimal T-cell epitopes in the context of HR or LR MHC class II molecules. Use of overlapping peptides showed that a core minimal 9-mer epitope (LTWVQTHIR, amino acids 2344-2352) was recognized by p2340-primed T cells from both HR (H2(k,s) ) and LR (H2(b,d) ) strains, whereas a second 9-mer epitope (HIRGFGGDP, amino acids 2350-2358) was antigenic only in H2(s) hosts.

View Article and Find Full Text PDF

We have previously identified a 20-mer peptide of human thyroglobulin (hTg), p2340 (aa2340-2359), which induced experimental autoimmune thyroiditis (EAT) in AKR/J (H-2(k)) and HLA-DR3 transgenic mice. In this study, we investigated the thyroiditogenic potential of p2340 in 'high responder' CBA/J (H-2(k)) and SJL/J (H-2(s)) or 'low responder' C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice. Mice were immunized subcutaneously with 100 nmol of p2340 in complete Freund's adjuvant (CFA) and both the proliferative capacity of their lymph node cells in the presence of p2340 or intact Tg and the production of peptide-specific antibodies were investigated.

View Article and Find Full Text PDF