To study the spatiotemporal variability of particle-bound polycyclic aromatic hydrocarbons (PAHs) and assess their carcinogenic potential in six contrasting urban environments in Greece, a total of 305 filter samples were collected and analyzed. Sampling sites included a variety of urban background, traffic (Athens, Ioannina and Heraklion), rural (Xanthi) and near-port locations (Piraeus and Volos). When considering the sum of 16 U.
View Article and Find Full Text PDFUltrafine particles (UFP) are recognized as an emerging pollutant able to induce serious health effects. However, quantitative information regarding the contributions of UFP sources is generally limited. This study evaluates statistical (k-means clustering) and receptor models (Positive Matrix Factorization - PMF) using particle number size distributions (PNSD), along with chemical speciation data, measured at an urban background supersite in Athens, Greece, aiming to characterize their sources.
View Article and Find Full Text PDFBiomass combustion releases a complex array of Volatile Organic Compounds (VOCs) that pose significant challenges to air quality and human health. Although biomass burning has been extensively studied at ecosystem levels, understanding the atmospheric transformation and impact on air quality of emissions in urban environments remains challenging due to complex sources and burning materials. In this study, we investigate the VOC emission rates and atmospheric chemical processing of predominantly wood burning emissions in a small urban centre in Greece.
View Article and Find Full Text PDFThis work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM, organic matter (OM) and SO of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017-2019.
View Article and Find Full Text PDFCloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.
View Article and Find Full Text PDFSecondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US).
View Article and Find Full Text PDFCloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol.
View Article and Find Full Text PDF