Publications by authors named "Aijuan Yu"

Article Synopsis
  • Collective cell migration (CCM) is crucial for various biological processes like embryonic development, blood vessel formation, and tumor progression, but the specific mechanisms, especially regarding how leader cells are formed, are not well understood.
  • This study identifies a signaling pathway that regulates the cleavage of angiomotin (AMOT), showing that when AMOT is cleaved, it promotes leader cell formation and enhances the motility of cells within a group.
  • The cleavage of AMOT switches the cells from being tightly connected (which restricts movement) to a more fluid state that facilitates collective and coordinated migration, highlighting its role as a regulator in CCM.
View Article and Find Full Text PDF

The Carbohydrate Response Element (ChoRE) Binding Protein (ChREBP) and its binding partner Max-like protein X (MLX) mediate transcription of lipogenic genes under glucose-rich conditions. Dysregulation of glucose and lipid metabolism frequently occurs in cancers, including Hepatocellular Carcinomas (HCCs). However, it is currently unclear whether the glucose-induced lipogenic program plays a role in the development of HCCs.

View Article and Find Full Text PDF

The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively.

View Article and Find Full Text PDF

The Hippo tumor-suppressor pathway is frequently dysregulated in human cancers and represents a therapeutic target. However, strategies targeting the mammalian Hippo pathway are limited because of the lack of a well-established cell-surface regulator. Here, we show that transmembrane protein KIRREL1, by interacting with both SAV1 and LATS1/2, promotes LATS1/2 activation by MST1/2 (Hippo kinases), and LATS1/2 activation, in turn, inhibits activity of YAP/TAZ oncoproteins.

View Article and Find Full Text PDF

YAP and TAZ (YAP/TAZ), two major effectors of the Hippo signaling pathway, are frequently activated in human cancers. The activity of YAP/TAZ is strictly repressed upon phosphorylation by LATS1/2 tumor suppressors. However, it is unclear how LATS1/2 are precisely regulated by upstream factors such as Hippo kinases MST1/2.

View Article and Find Full Text PDF

While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration.

View Article and Find Full Text PDF