Polysaccharides are gaining increasing attention for their relevance in the production of sustainable materials. In the domain of biomaterials, polysaccharides play an important role as hydrophilic components in the design of amphiphilic block copolymers for the development of drug delivery systems, in particular nanocarriers due to their outstanding biocompatibility, biodegradability, and structural versatility. The presence of a reducing end in polysaccharide chains allows for the synthesis of polysaccharide-based block copolymers.
View Article and Find Full Text PDFFully bio-based amphiphilic diblock copolymers were synthesized from hydroxypropyl methyl cellulose (HPMC) and amino-terminated poly(l-lactide) (PLLA) or poly(l-lactide-co-dl-lactide) (PLA) by reductive amination. The resulting HPMC-PLLA and HPMC-PLA copolymers with various hydrophobic block lengths were characterized by NMR, DOSY-NMR and FT-IR. Micelles were obtained by self-assembly of copolymers in aqueous medium.
View Article and Find Full Text PDFA series of amphiphilic and thermo-responsive block copolymers were synthesized by reductive amination between the aldehyde endgroup of hydrophilic HPMC and the amine group of monoamine, diamine, or triamine JEFFAMINE as hydrophobic block. The resulting diblock, triblock and three-armed copolymers with different hydrophilic/hydrophobic ratios and block lengths were characterized by NMR, FT-IR, DOSY-NMR and SEC. The cloud point (CP) of copolymers was determined by UV-visible spectrometer.
View Article and Find Full Text PDFAB-type amphiphilic (HPMC)-PLA copolymers with various hydrophilic block lengths were synthesized using a three step procedure: ring-opening polymerization of L-lactide initiated by propynol, amination reduction of the aldehyde endgroup of HPMC, and thiol-click reaction. The resulted copolymers were characterized by NMR, DOSY-NMR, SEC and FT-IR. The cloud point (CP) was determined by UV-vis spectrometer.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2018
Appl Microbiol Biotechnol
April 2016
Anti-bacterial materials play significant role in biomedical field. Researches and applications of new anti-bacterial materials are necessary. Novel linear and star-shaped copolymers of poly(caprolactone)-poly(quaternary ammonium salt) (PCL-PJDMA) were synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2015
Amphiphilic poly(ɛ-caprolactone)-SS-poly(N,N-diethylaminoethyl methacrylate)-r-poly(N-(3-sulfopropyl)-N-methacrylate-N,N-diethylammonium-betaine) (PCL-SS-PDEASB) was designed and synthesized successfully. pH and redox dually responsive micelles were prepared based on the obtained copolymers, with zwitterionic sulfobetaines as hydrophilic shell, DEA as pH sensitive content and disulfide as redox responsive linkage. The micelle diameters were all less than 200 nm and the micelle diameter distributions were narrow.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2015
Surface chemical characteristics of biomedical polymers, which are determined by the migration and rearrangement of polymeric chains, play an important role in the protein adsorption. In this work, the relationship between the architectures of amphiphilic polyesters and their protein adsorption resistance was investigated. Three poly (ɛ-caprolactone)s containing sulfobetaines (PCL-b-PDEAS) segments with linear, four arms and six arms star-shaped architectures were synthesized with the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP).
View Article and Find Full Text PDFFour arm star-shaped poly(ε-caprolactone)-b-poly((N,N-diethylaminoethyl methacrylate)-r-(N-(3-sulfopropyl)-N-methacryloxyethy-N,N-diethylammoniumbetaine)) (4sPCLDEAS) micelles were loaded with anticancer drug doxorubicin to track their endocytosis in Hela cancer cell line. The effects of mean diameters and surface charges of the drug loaded micelles on the cellular uptake were studied in details. The results demonstrated that the internalization of micelles was both time and energy dependent process.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2013
Linear and star-shape poly(ɛ-caprolactone)-b-poly(N-(3-sulfopropyl)-N-methacryloxyethyl-N,N-diethylammoniumbetaine) (L/sPCL-b-PDEAS) with 4 and 6 arms were synthesized with the combination of Ring Opening Polymerization (ROP) and Atom Transfer Radical Polymerization (ATRP). These copolymers self-assembled into micelles via solvent evaporation method. The critical micelle concentration (CMC), determined by fluorescence spectroscopy using pyrene as a probe, was lower than 10(-3)mg/mL and decreased with increasing arm numbers.
View Article and Find Full Text PDFNovel polyurethanes with zwitterionic sulfobetaines, termed PUR-APS, were designed and synthesized by chain-extension of biodegradable poly(ε-caprolactone) containing N,N'-bis (2-hydroxyethyl) methylamine ammonium propane sulfonate (PCL-APS) with hexamethylene diisocyanate (HDI). The bulk properties of polymers were characterized by nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatograph (GPC), and differential scanning calorimetry (DSC). Results showed that the polymers were successfully synthesized.
View Article and Find Full Text PDF