Cadmium (Cd) is prevalent in aquatic ecosystems and accumulates in various tissues of aquatic organisms, leading to severe biological toxicity. Selenium (Se) is recognized for mitigating heavy metal toxicity, though its protective effects against Cd in aquatic crustaceans remain underexplored. This study, therefore, assessed the effects of dietary Cd (15 mg/kg) exposure and Se (6 mg/kg) supplementation on the hepatopancreas and ovaries of female crayfish to uncover the mechanisms of Cd toxicity and the protective role of Se.
View Article and Find Full Text PDFSelenium (Se), an indispensable micronutrient for living organisms, has been extensively studied for its heavy metal-detoxifying properties in diverse biological systems and tissues. Nevertheless, it is not entirely certain whether Se can effectively protect against Cadmium (Cd)-induced gut inflammation, especially in aquatic animals. In this study, we employed various approaches, including transcriptome profiling, histological examinations, assessment of antioxidant enzyme activities, and analysis of gut microbiota composition to investigate the effects on crayfish growth and intestinal health after exposure to dietary Cd (15 mg kg diet) and Se (15 mg kg diet) individually or in combination for 8 weeks.
View Article and Find Full Text PDFCadmium (Cd), a non-biodegradable contaminant in freshwater ecosystems, can pose a serious threat to aquatic animals at high levels. In this study, the Cd toxicokinetics and the immune and antioxidant defense were explored in Procambarus clarkii exposed to different levels of Cd (0, 0.1, 1.
View Article and Find Full Text PDFThe objective of this study was to examine the influences of glycinin for growth and intestinal structural integrity related to oxidative damage, apoptosis and tight junction of juvenile hybrid yellow catfish ( ♀ × ♂). Fish (initial weight, 1.02 ± 0.
View Article and Find Full Text PDFHigh-density culturing with excessive feeding of commercial feed has caused heavy metals pollution to agricultural production system. In this study, the dynamic changes and transfer of heavy metals in rice-crayfish coculture system (RCCS) and crayfish intensive culture system (CICS) within a completed culture cycle were systematically quantified. Our results showed that Cd in feed represented more than 50% of the total Cd input, and the inputs of As and Cr were mainly from irrigation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2022
Contamination with heavy metals in wild red swamp crayfish (Procambarus clarkii) from 7 different geographical areas in six provinces of China (Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shandong) was evaluated. Concentrations of chromium (Cr), arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) in the abdominal muscle, gonad, and hepatopancreas were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometer (AFS). Except for the Cd content in the hepatopancreas, the contents of selected heavy metals in three different tissues were significantly lower than the proposed limits provided by United States Environmental Protection Agency (USEPA).
View Article and Find Full Text PDFRecently, bioaccumulation of dietary organic selenium (Se) in the ovaries and inhibition of reproduction in female aquatic animals have been reported. However, there is limited data on the subtle reproductive impacts of waterborne exposure to inorganic Se in fish. Here, zebrafish embryos (2 h post-fertilization) were exposed to solutions with environmentally relevant levels of NaSeO with concentrations of 0 (control), 7.
View Article and Find Full Text PDFThe effect of selenium (Se) on the reproductive system has been investigated in both humans and vertebrates, but few studies of female fertility and reproduction in invertebrate have been reported. This study is aimed to investigate the effect of SeMet on growth performance and reproductive system after crayfish were fed with graded levels of dietary SeMet (0, 1.49, 3.
View Article and Find Full Text PDF