Publications by authors named "Aijie Han"

Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation.

View Article and Find Full Text PDF

Background: Traumatic peripheral nerve injury (TPNI) is a major medical problem with no universally accepted pharmacologic treatment. We hypothesized that encapsulation of pro-angiogenic erythropoietin (EPO) in amphiphilic PLGA-PEG block copolymers could serve as a local controlled-release drug delivery system to enhance neurovascular regeneration after nerve injury.

Methods: In this study, we synthesized an EPO-PLGA-PEG block copolymer formulation.

View Article and Find Full Text PDF

Materials with high dielectric constant, ε, are desirable in a wide range of applications including energy storage and actuators. Recently, zwitterionic liquids have been reported to have the largest ε of any liquid and, thus, have the potential to replace inorganic fillers to modulate the material ε. Although the large ε for zwitterionic liquids is attributed to their large molecular dipole, the role of chemical substituents attached to the zwitterion cation on ε is not fully understood, which is necessary to enhance the performance of soft energy materials.

View Article and Find Full Text PDF

The aim of this study was to investigate the protective effects of Nano-Se against Ni-induced testosterone synthesis disorder in rats and determine the underlying protective mechanism. Sprague-Dawley rats were co-treated with Ni (5.0 mg/kg, i.

View Article and Find Full Text PDF

Nickel (Ni) is a common environmental pollutant, which has toxic effects on reproductive system. Nowadays, nano-selenium (Nano-Se) has aroused great attention due to its unique antioxidant effect, excellent biological activities and low toxicity. The aim of this study was to explore the protective effects of Nano-Se on NiSO-induced testicular injury and apoptosis in rat testes.

View Article and Find Full Text PDF

Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells.

View Article and Find Full Text PDF

The aim of the present study was to explore the role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles (nano‑NiO) in rats. Male Wistar rats received saline (control), nano‑NiO [0.015, 0.

View Article and Find Full Text PDF

Nickel oxide nanoparticles (nano NiO) could induce hepatocyte apoptosis, while its potential mechanisms are unclear. This study aimed to explore the role of endoplasmic reticulum (ER) stress pathways in hepatocyte apoptosis induced by nano NiO. Male Wistar rats were administrated with nano NiO (0.

View Article and Find Full Text PDF

Nickel can induce apoptosis of testicular Leydig cells in mice, whereas the mechanisms remain unclear. In this study, we investigated the role of nickel-induced reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum stress (ERS) mediated apoptosis pathways in rat Leydig cells. Fluorescent DCF and Annexin-V FITC/PI staining were performed to measure the production of ROS and apoptosis in Leydig cells.

View Article and Find Full Text PDF

Studies have demonstrated that nano NiO could induce liver toxicity in rats, but its mechanism remains unclear. This study aimed to explore the role of the NF-κB signaling pathway in rat liver toxicity after nano NiO exposure. Male Wistar rats were exposed to nano NiO (0.

View Article and Find Full Text PDF

Biogenic silica nanoparticles (25-30 nm in diameter) were synthesized from rice husks. The characterizations revealed that the silica nanoparticles were composed of smaller primary particles (ca. 4.

View Article and Find Full Text PDF

In an electrowetting experiment on a surface treated hexagonal mesoporous silica, it is noticed that the effective solid-liquid interfacial tension is quite insensitive to the applied voltage, while the accessible nanopore volume decreases significantly as the voltage is increased. When the voltage is higher than 900 V, the liquid infiltration cannot be detected. The liquid defiltration is quite insensitive to the electric field.

View Article and Find Full Text PDF

In the past, electrowetting was usually analyzed on large solid surfaces. In the current study, the effective solid-liquid interfacial tension in a nanoporous silica, which is measured by the ion transport pressure, is investigated experimentally. The interfacial tension decreases as the applied potential difference increases, while the magnitude of variation is much smaller than its bulk counterpart.

View Article and Find Full Text PDF

In both experiment and molecular simulation, it is found that a higher pressure is required to sustain the infiltration of smaller ions in a molecular-sized nanochannel. Simulations indicate that the effective ion solubility of the infiltrated liquid is reduced to nearly zero. Because of the strong interactions between the ion couples and the solid or liquid phases, an external force is required to continuously advance the confined liquid segment.

View Article and Find Full Text PDF

In pure water a hydrothermally treated zeolite Y is hydrophilic, while with the addition of an electrolyte it can no longer be soaked up spontaneously. The effective degree of hydrophobicity increases with the ion concentration, which is reflected by the increase in infiltration pressure. The pressure-induced infiltration behavior is not only determined by the cations, but also highly dependent on the anion species.

View Article and Find Full Text PDF

The transport behavior of water molecules inside a model carbon nanotube is investigated by using nonequilibrium molecular dynamcis (NMED) simulations. The shearing stress between the nanotube wall and the water molecules is identified as a key factor in determining the nanofluidic properties. Due to the effect of nanoscale confinement, the effective shearing stress is not only size sensitive but also strongly dependent on the fluid flow rate.

View Article and Find Full Text PDF

By analyzing sorption isotherm curves of surface treated MCM-41 samples, it is noticed that if the nanopore size is relatively small, the end group dominates the solid-liquid interaction and the influence of the side group is relatively weak, which can be attributed to the confinement effect of nanopore walls.

View Article and Find Full Text PDF

By applying an external pressure, an aqueous solution of promoters can be forced into a hydrophobic nanoporous silica gel. The promoter molecule demands a free volume several times larger than itself to enter the nanoenvironment. The free volume size is a function of the promoter concentration.

View Article and Find Full Text PDF

Affinity index (AT value), adsorption heat, X-ray diffraction (XRD), and 13C and 29Si magic-angle spinning (MAS) NMR, FTIR, and Raman spectroscopies were used to study the interaction of highly siliceous MFI-, FAU-, and FER-type zeolites with adsorbed methylamine (MA). Compared with the data for methanol, the much higher AT values and adsorption heats, and significant changes in XRD patterns, 29Si MAS NMR spectra, and FTIR spectra for the zeolites after adsorption of MA, revealed a strong hydrogen-bonding interaction between the perfect framework of the zeolites and the adsorbed MAs. This interaction results from the fact that the H atom of the amine group attacks the [Si-O] framework to form a Si-OHN bond, which leads to the appearance of Si-N bonds in the zeolites at 323 K.

View Article and Find Full Text PDF