We study a method for controlling the flow of excitation through decaying levels in a three-level ladder excitation scheme in Na(2) molecules. Like the stimulated Raman adiabatic passage (STIRAP), this method is based on the control of the evolution of adiabatic states by a suitable delayed interaction of the molecules with two radiation fields. However, unlike STIRAP, which transfers a population between two stable levels g and f via a decaying intermediate level e through the interaction of partially overlapping pulses (usually in a Lambda linkage), here the final level f is not long lived.
View Article and Find Full Text PDFA technique for adiabatic control of the population flow through a preselected decaying excited level in a three-level quantum ladder is presented. The population flow through the intermediate or upper level is controlled efficiently and robustly by varying the pulse delay between a pair of partly overlapping coherent laser pulses. The technique is analyzed theoretically and demonstrated in an experiment with Na2 molecules.
View Article and Find Full Text PDF