Publications by authors named "Aiga Mackevica"

The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the association of CeO NPs with unicellular algae () and changes to the cellular elemental profile were investigated using three exposure concentrations (1, 50, and 1000 µg CeO/L) at two different algal growth conditions-exponential and inhibited growth (1% glutaraldehyde). After a 24 h-exposure, algal suspensions were settled by gravity and CeO-NP/algae association was analyzed by single-cell inductively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and ICP time-of-flight MS (sc-ICP-TOFMS).

View Article and Find Full Text PDF

The dissolution of metal-based engineered nanomaterials (ENMs) in aquatic environments is an important mechanism governing the release of toxic dissolved metals. For the registration of ENMs at regulatory bodies such as REACH, their dissolution behavior must therefore be assessed using standardized experimental approaches. To date, there are no standardized procedures for dissolution testing of ENMs in environmentally relevant aquatic media, and the Organisation for Economic Co-operation and Development (OECD) strongly encourages their development into test guidelines.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (n-TiO) are among the man-made nanomaterials that are predicted to be found at high concentrations in the aquatic environment. There, they likely co-exist with other chemical pollutants. Thus, n-TiO and other chemical pollutants can be taken up together or accumulate independently from each other in prey organisms of fish.

View Article and Find Full Text PDF

There is increasing evidence that titanium dioxide (TiO) nanoparticles (NPs) present in water or diet can be taken up by fish and accumulate in internal organs including the liver. However, their further fate in the organ is unknown. This study provides new insights into the interaction, uptake mechanism, intracellular trafficking, and fate of TiO NPs (Aeroxide® P25) in fish liver parenchymal cells (RTL-W1) in vitro using high-resolution transmission electron microscopy (TEM) and single particle inductively coupled plasma mass spectrometry (spICP-MS) as complementary analytical techniques.

View Article and Find Full Text PDF

Bacterial biofilm represents a major problem in medicine. They colonize and damage medical devices and implants and, in many cases, foster development of multidrug-resistant microorganisms. Biofilm development starts by bacterial attachment to the surface and the production of extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Background: (hemp) is a source of various biologically active compounds, for instance, cannabinoids, terpenes and phenolic compounds, which exhibit antibacterial, antifungal, anti-inflammatory and anticancer properties. With the purpose of expanding the auxiliary application of in the field of bio-nanotechnology, we explored the plant for green and efficient synthesis of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs).

Methods And Results: The nanoparticles were synthesized by utilizing an aqueous extract of stem separated into two different fractions (cortex and core [xylem part]) without any additional reducing, stabilizing and capping agents.

View Article and Find Full Text PDF

The use of nano-scale copper oxide (CuO) and basic copper carbonate (Cu(OH)CO) in both ionic and micronized wood preservatives has raised concerns about the potential of these substances to cause adverse humans health effects. To address these concerns, we performed quantitative (probabilistic) human health risk assessment (HHRA) along the lifecycles of these formulations used in antibacterial and antifungal wood coatings and impregnations by means of the EU FP7 SUN project's Decision Support System (SUNDS, www.sunds.

View Article and Find Full Text PDF

The life cycle of nanoscale pigments in plastics may cause environmental or human exposure by various release scenarios. We investigated spontaneous and induced release with mechanical stress during/after simulated sunlight and rain degradation of polyethylene (PE) with organic and inorganic pigments. Additionally, primary leaching in food contact and secondary leaching from nanocomposite fragments with an increased surface into environmental media was examined.

View Article and Find Full Text PDF

While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or acute aquatic toxicity for differently stabilized AgNP have often been reported, these have rarely been studied in long-term ecotoxicity tests. In the current study, we investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both types of AgNP during a typical media exchange period in the D.

View Article and Find Full Text PDF

The use of silver nanoparticles (NPs) in commercial products has become increasingly common in the past decade, mostly due to their antimicrobial properties. Using Ag NP-containing articles may lead to particle release, which raises concern of human and environmental safety. The published literature addressing particle release is scarce, especially when it comes to quantifying exposure to NPs specifically.

View Article and Find Full Text PDF

The analysis of the potential risks of engineered nanomaterials (ENM) has so far been almost exclusively focused on the pristine, as-produced particles. However, when considering a life-cycle perspective, it is clear that ENM released from genuine products during manufacturing, use, and disposal is far more relevant. Research on the release of materials from nanoproducts is growing and the next necessary step is to investigate the behavior and effects of these released materials in the environment and on humans.

View Article and Find Full Text PDF

The European chemical legislation requires manufacturers and importers of chemicals to do consumer exposure assessment when the chemical has certain hazards associated to it (e.g. explosive, carcinogenicity, and hazardous to the aquatic environment), but the question is how this obligation can be met in light of the scientific uncertainty and technical challenges related to exposure assessment of nanomaterials.

View Article and Find Full Text PDF

Despite substantial information on the acute toxicity of silver nanoparticles (AgNP) to aquatic organisms, little is known about their potential chronic effects and the applicability of current test guidelines for testing nanomaterials. The purpose of this study was to study the influence of food availability on toxicity. This was done through a series of Daphnia magna 21-day reproduction tests (OECD 211) using 30 nm citric acid stabilized AgNP aimed at studying the influence of food abundance on the reproductive toxicity of AgNP in D.

View Article and Find Full Text PDF