Publications by authors named "Aiden Reich"

Background: The methodology of assessment and training of surgical skills is evolving to deal with the emergence of competency-based training. Artificial neural networks (ANNs), a branch of artificial intelligence, can use newly generated metrics not only for assessment performance but also to quantitate individual metric importance and provide new insights into surgical expertise.

Objective: To outline the educational utility of using an ANN in the assessment and quantitation of surgical expertise.

View Article and Find Full Text PDF

In procedural-based medicine, the technical ability can be a critical determinant of patient outcomes. Psychomotor performance occurs in real-time, hence a continuous assessment is necessary to provide action-oriented feedback and error avoidance guidance. We outline a deep learning application, the Intelligent Continuous Expertise Monitoring System (ICEMS), to assess surgical bimanual performance at 0.

View Article and Find Full Text PDF

Background: Virtual reality surgical simulators are a safe and efficient technology for the assessment and training of surgical skills. Simulators allow trainees to improve specific surgical techniques in risk-free environments. Recently, machine learning has been coupled to simulators to classify performance.

View Article and Find Full Text PDF

Background: Animal brain tumor models can be useful educational tools for the training of neurosurgical residents in risk-free environments. Magnetic resonance imaging (MRI) technologies have not used these models to quantitate tumor, normal gray and white matter, and total tissue removal during complex neurosurgical procedures. This pilot study was carried out as a proof of concept to show the feasibility of using brain tumor models combined with 7-T MRI technology to quantitatively assess tissue removal during subpial tumor resection.

View Article and Find Full Text PDF