This study reports the steady-state pharmacokinetic parameters for mitragynine and characterizes its elimination in male and female rats. Four male and female rats were dosed q12h with 40 mg/kg, and orally administered mitragynine for 5 and 6 days, respectively. Using a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, the plasma concentrations of mitragynine, its metabolites (7-hydroxymitragynine, 9-hydroxycorynantheidine, and mitragynine acid), and a non-CYP oxidation product (3-dehydromitragynine) were determined at various time points.
View Article and Find Full Text PDFMitragynine, an alkaloid present in the leaves of Mitragyna speciosa (kratom), has a complex pharmacology that includes low efficacy agonism at μ-opioid receptors (MORs). This study examined the activity of mitragynine at adrenergic α receptors (AαRs) in vitro and in vivo. Mitragynine displaced a radiolabeled AαR antagonist ([H]RX821002) from human AαRs in vitro with lower affinity (K = 1260 nM) than the agonists (-)-epinephrine (K = 263 nM) or lofexidine (K = 7.
View Article and Find Full Text PDFBackground: Sleep disturbance is commonly reported among individuals meeting criteria for cannabis use disorder (CUD), and people who use cannabis frequently report sleep disturbance as a contributor to failed quit attempts. The purpose of this study was to measure sleep in individuals enrolled in treatment for CUD, and to determine whether use of hypnotic medication during treatment increased abstinence rates.
Method: The study enrolled 127 adults seeking treatment for CUD in a 12-week clinical trial and randomized to receive extended-release zolpidem (zolpidem-XR) or placebo.
Importance: Buprenorphine treatment for opioid use disorder (OUD) has more than doubled since 2009. However, current US Food and Drug Administration buprenorphine dosing guidelines are based on studies among people using heroin, prior to the emergence of fentanyl in the illicit drug supply.
Objective: To estimate the association between buprenorphine dose and time to treatment discontinuation during a period of widespread fentanyl availability.
Mitragynine, an opioidergic alkaloid present in (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro.
View Article and Find Full Text PDFThe opioid overdose death toll in the United States is an ongoing public health crisis. We characterized the magnitude and duration of respiratory depression, the leading cause of death in opioid overdose cases, induced by heroin or fentanyl and the development of tolerance in male and female rats. We used whole-body plethysmography to first establish dose-response curves by recording breathing for 60 minutes post-intravenous opioid injection.
View Article and Find Full Text PDFKratom alkaloids have mostly been evaluated for their opioid activity but less at other targets that could contribute to their physiological effects. Here, we investigated the in vitro and in vivo activity of kratom alkaloids at serotonin receptors (5-HTRs). Paynantheine and speciogynine exhibited high affinity for 5-HTRs and 5-HTRs, unlike the principal kratom alkaloid mitragynine.
View Article and Find Full Text PDFBackground And Objectives: 7-Hydroxymitragynine (7-HMG) is an oxidative metabolite of mitragynine, the most abundant alkaloid in the leaves of Mitragyna speciosa (otherwise known as kratom). While mitragynine is a weak partial µ-opioid receptor (MOR) agonist, 7-HMG is a potent and full MOR agonist. It is produced from mitragynine by cytochrome P450 (CYP) 3A, a drug-metabolizing CYP isoform predominate in the liver that is also highly expressed in the intestine.
View Article and Find Full Text PDFTen indole and oxindole alkaloids (-) were isolated from the freshly collected leaves of Malaysian (Kratom). The chemical structures of these compounds were established on the basis of extensive 1D and 2D NMR and HRMS data analysis. The spectroscopic data of mitragynine oxindole B () are reported herein for the first time.
View Article and Find Full Text PDFKratom is widely consumed in the United States for self-treatment of pain and opioid withdrawal symptoms. Mitragynine is the most abundant alkaloid in kratom and is a μ-opioid receptor agonist. 7-Hydroxymitragynine (7-HMG) is a mitragynine metabolite that is a more potent and efficacious opioid than its parent mitragynine.
View Article and Find Full Text PDFAdherence monitoring is a vital component of clinical efficacy trials, as the regularity of medication consumption affects both efficacy and adverse effect profiles. Pill-counts do not confirm consumption, and invasive plasma assessments can only assist post hoc assessments. We previously reported on the pharmacokinetics of a potential adherence marker to noninvasively monitor dosage consumption during a trial without breaking a blind.
View Article and Find Full Text PDFCannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy. Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs).
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2017
Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions. However, over time, repeated activation of the ECS by cannabis can trigger neuroadaptations that may impair the sensitivity to stress and reward. This effect, in vulnerable individuals, can lead to addiction and other adverse consequences.
View Article and Find Full Text PDFRationale: Accurate assessment of medication adherence is critical for determination of medication efficacy in clinical trials, but most current methods have significant limitations. This study tests a subtherapeutic (microdose) of acetazolamide as a medication ingestion marker because acetazolamide is rapidly absorbed and excreted without metabolism in urine and can be noninvasively sampled.
Methods: In a double-blind, placebo-controlled, residential study, 10 volunteers received 15 mg oral acetazolamide for 4 consecutive days.
Effective strategies to monitor pharmacotherapy adherence are necessary, and sensitive biological markers are lacking. This study examined a subtherapeutic dose of quinine as a potential adherence tracer. Primary aims included examination of the plasma and urinary pharmacokinetic profile of once-daily quinine; secondary aims assessed pharmacokinetic/pharmacodynamic interactions with oxycodone (a CYP3A and CYP2D substrate).
View Article and Find Full Text PDFAMPA receptors (AMPARs) are an increasingly important therapeutic target in the CNS. Aniracetam, the first identified potentiator of AMPARs, led to the rigid and more potent CX614. This lead molecule was optimized in order to increase affinity towards the AMPA receptor.
View Article and Find Full Text PDFAMPA receptors (AMPARs) are an important therapeutic target in the CNS. A series of substituted benzoxazinone derivatives with good to very good in vitro activity as positive allosteric AMPAR modulators was synthesized and evaluated. The appropriate substituent choice on the benzoxazinone fragment improved the affinity towards the AMPA receptor significantly in comparison to our lead molecule CX614.
View Article and Find Full Text PDFBinge alcohol consumption in the rat induces substantial neurodegeneration in the hippocampus and entorhinal cortex. Oxidative stress and cytotoxic edema have both been shown to be involved in such neurotoxicity, whereas N-methyl-d-aspartate (NMDA) receptor activity has been implicated in alcohol withdrawal and excitoxic injury. Because the nonpsychoactive cannabinoid cannabidiol (CBD) was previously shown in vitro to prevent glutamate toxicity through its ability to reduce oxidative stress, we evaluated CBD as a neuroprotectant in a rat binge ethanol model.
View Article and Find Full Text PDF12-hydroxyeicosatetraenoic acid (12-HETE) is a neuromodulator that is synthesized during ischemia. Its neuronal effects include attenuation of calcium influx and glutamate release as well as inhibition of AMPA receptor (AMPA-R) activation. Because 12-HETE reduces ischemic injury in the heart, we examined whether it can also reduce neuronal excitotoxicity.
View Article and Find Full Text PDF