Publications by authors named "Aidan Gilmartin"

Fibroblast growth factor receptor (FGFR) alterations drive oncogenesis in multiple tumor types. Here we studied pemigatinib, a selective, potent, oral FGFR1-FGFR3 inhibitor, in the phase 2 FIGHT-207 basket study of FGFR-altered advanced solid tumors. Primary end points were objective response rate (ORR) in cohorts A (fusions/rearrangements, n = 49) and B (activating non-kinase domain mutations, n = 32).

View Article and Find Full Text PDF

Background: Parsaclisib is a potent and highly selective PI3Kδ inhibitor that has shown clinical benefit in patients with relapsed/refractory (R/R) B-cell malignancies. In this phase 2 study (CITADEL-205; NCT03235544, EudraCT 2017-003148-19), the efficacy and safety of parsaclisib was evaluated in patients with R/R mantle cell lymphoma (MCL).

Methods: Patients ≥18 years old with pathologically confirmed R/R MCL and prior treatment with 1-3 systemic therapies, with (cohort 1) or without (cohort 2) previous Bruton kinase inhibitor (BTKi) treatment, received oral parsaclisib 20 mg once-daily (QD) for 8 weeks, then either parsaclisib 20 mg once-weekly (weekly dosing group [WG]) or parsaclisib 2.

View Article and Find Full Text PDF

Parsaclisib, a potent, selective, next-generation PI3Kδ inhibitor, has shown clinical benefit in patients with relapsed or refractory B-cell lymphoma. We undertook a phase Ib study (CITADEL-111) evaluating safety, pharmacokinetics, and efficacy of parsaclisib in Japanese patients with relapsed or refractory B-cell malignancies. Patients received oral parsaclisib daily for 8 weeks then once weekly (10-mg dose, n = 3; 20-mg dose, n = 14).

View Article and Find Full Text PDF

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions.

View Article and Find Full Text PDF

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364.

View Article and Find Full Text PDF

Beta-hemoglobinopathies such as sickle cell disease represent a major global unmet medical need. De-repression of fetal hemoglobin in erythrocytes is a clinically validated approach for the management of sickle cell disease, but the only FDA-approved medicine for this purpose has limitations to its use. We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules with the ability to de-repress fetal hemoglobin, which resulted in the identification of the benzoxaborole-containing hit compound 1.

View Article and Find Full Text PDF

Hydroxyurea induces production of fetal hemoglobin (HbF), a tetramer of α and γ globin proteins and corresponding heme molecules, normally found in less than 1% of adult RBC. Increases in circulating HbF are correlated with clinical improvement of patients with hemoglobinopathies, and hydroxyurea, as a daily medication, is the standard treatment for sickle cell anemia. Although olive baboons () are considered a key model species for HbF induction, cynomolgus macaques () are another species that conserves the ability to produce HbF into maturity.

View Article and Find Full Text PDF

The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis.

View Article and Find Full Text PDF

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases.

View Article and Find Full Text PDF

The MEK1 and MEK2 inhibitor GSK1120212 is currently in phase II/III clinical development. To identify predictive biomarkers, sensitivity to GSK1120212 was profiled for 218 solid tumor cell lines and 81 hematologic malignancy cell lines. For solid tumors, RAF/RAS mutation was a strong predictor of sensitivity.

View Article and Find Full Text PDF

Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) represents a promising strategy for the discovery of a new generation of anticancer chemotherapeutics. Our synthetic efforts, beginning from the lead compound 2, were directed at improving antiproliferative activity against cancer cells as well as various drug properties. These efforts led to the discovery of N-{3-[3-cyclopropyl-5-(2-fluoro-4-iodophenylamino)-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydro-2H-pyrido[4,3-d]pyrimidin-1-yl]phenyl}acetamide dimethylsulfoxide solvate (GSK1120212, JTP-74057 DMSO solvate; 1), a selective and highly potent MEK inhibitor with improved drug properties.

View Article and Find Full Text PDF

Purpose: Despite their preclinical promise, previous MEK inhibitors have shown little benefit for patients. This likely reflects the narrow therapeutic window for MEK inhibitors due to the essential role of the P42/44 MAPK pathway in many nontumor tissues. GSK1120212 is a potent and selective allosteric inhibitor of the MEK1 and MEK2 (MEK1/2) enzymes with promising antitumor activity in a phase I clinical trial (ASCO 2010).

View Article and Find Full Text PDF

Polo-like kinases are a family of serine threonine kinases that are critical regulators of cell cycle progression and DNA damage response. Predictive biomarkers for the Plk1-selective inhibitor GSK461364A were identified by comparing the genomics and genetics of a panel of human cancer cell lines with their response to a drug washout followed by an outgrowth assay. In this assay, cell lines that have lost p53 expression or carry mutations in the TP53 gene tended to be more sensitive to GSK461364A.

View Article and Find Full Text PDF

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules.

View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) is a conserved serine/threonine kinase that plays an essential role in regulating the many processes involved in mitotic entry and progression. In humans, Plk1 is expressed primarily during late G(2) and M phases and, in conjunction with Cdk1/cyclin B1, acts as master regulatory kinases for the myriad protein substrates involved in mitosis. Plk1 overexpression is strongly associated with cancer and has been correlated with poor prognosis in a broad range of human tumor types.

View Article and Find Full Text PDF

The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo.

View Article and Find Full Text PDF